These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22841865)

  • 21. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.
    Nambu-Nishida Y; Sakihama Y; Ishii J; Hasunuma T; Kondo A
    J Biosci Bioeng; 2018 Jan; 125(1):76-86. PubMed ID: 28869192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes.
    Fernandes AR; Mira NP; Vargas RC; Canelhas I; Sá-Correia I
    Biochem Biophys Res Commun; 2005 Nov; 337(1):95-103. PubMed ID: 16176797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress.
    Mira NP; Henriques SF; Keller G; Teixeira MC; Matos RG; Arraiano CM; Winge DR; Sá-Correia I
    Nucleic Acids Res; 2011 Sep; 39(16):6896-907. PubMed ID: 21586585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation.
    Kresnowati MT; van Winden WA; Almering MJ; ten Pierick A; Ras C; Knijnenburg TA; Daran-Lapujade P; Pronk JT; Heijnen JJ; Daran JM
    Mol Syst Biol; 2006; 2():49. PubMed ID: 16969341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.
    Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D
    Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae.
    Semchyshyn HM; Abrat OB; Miedzobrodzki J; Inoue Y; Lushchak VI
    Redox Rep; 2011; 16(1):15-23. PubMed ID: 21605494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.
    An J; Kwon H; Kim E; Lee YM; Ko HJ; Park H; Choi IG; Kim S; Kim KH; Kim W; Choi W
    Environ Microbiol; 2015 Mar; 17(3):656-69. PubMed ID: 24761971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation.
    Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Leão C; Mendes-Faia A; Pérez-Ortín JE
    Appl Environ Microbiol; 2007 Aug; 73(16):5363-9. PubMed ID: 17601813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.
    Cunha JT; Costa CE; Ferraz L; Romaní A; Johansson B; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2018 May; 102(10):4589-4600. PubMed ID: 29607452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an Haa1-Based Biosensor for Acetic Acid Sensing in Saccharomyces cerevisiae.
    Blick E; Mormino M; Siewers V; Nygård Y
    Methods Mol Biol; 2024; 2844():221-238. PubMed ID: 39068343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Xiao Y; Hu Y; Sun H; Xue W; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2016 Sep; 32(9):145. PubMed ID: 27430512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PGK1 Promoter Library for the Regulation of Acetate Ester Production in Saccharomyces cerevisiae during Chinese Baijiu Fermentation.
    Cui DY; Zhang Y; Xu J; Zhang CY; Li W; Xiao DG
    J Agric Food Chem; 2018 Jul; 66(28):7417-7427. PubMed ID: 29939025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions.
    Berthelet S; Usher J; Shulist K; Hamza A; Maltez N; Johnston A; Fong Y; Harris LJ; Baetz K
    Genetics; 2010 Jul; 185(3):1111-28. PubMed ID: 20439772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice.
    Techaparin A; Thanonkeo P; Klanrit P
    Biotechnol Lett; 2017 Oct; 39(10):1521-1527. PubMed ID: 28721580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae.
    Sousa M; Duarte AM; Fernandes TR; Chaves SR; Pacheco A; Leão C; Côrte-Real M; Sousa MJ
    BMC Genomics; 2013 Nov; 14(1):838. PubMed ID: 24286259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.