BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22841954)

  • 1. Water spinach (Ipomoea aquatic Forsk.) reduced the absorption of heavy metals in an in vitro bio-mimicking model system.
    Yang UJ; Yoon SR; Chung JH; Kim YJ; Park KH; Park TS; Shim SM
    Food Chem Toxicol; 2012 Oct; 50(10):3862-6. PubMed ID: 22841954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: the influence of cooking and additives.
    Fu J; Cui Y
    Food Chem Toxicol; 2013 Sep; 59():215-21. PubMed ID: 23791752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.
    Wang KS; Huang LC; Lee HS; Chen PY; Chang SH
    Chemosphere; 2008 Jun; 72(4):666-72. PubMed ID: 18471856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans.
    Fritioff A; Greger M
    Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils.
    Denys S; Caboche J; Tack K; Rychen G; Wragg J; Cave M; Jondreville C; Feidt C
    Environ Sci Technol; 2012 Jun; 46(11):6252-60. PubMed ID: 22606949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens.
    Sharifan H; Moore J; Ma X
    Ecotoxicol Environ Saf; 2020 Mar; 191():110177. PubMed ID: 31958627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd
    Wang T; Wang X; Tian W; Yao L; Li Y; Chen Z; Han H
    Int J Environ Res Public Health; 2020 Apr; 17(9):. PubMed ID: 32365834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation analysis and safety assessment in two water spinach cultivars with distinctive shoot Cd and Pb concentrations.
    Huang B; Xin J; Dai H; Liu A; Zhou W; Liao K
    Environ Sci Pollut Res Int; 2014 Oct; 21(19):11565-71. PubMed ID: 25028323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of cadmium and lead by
    Daisley BA; Monachese M; Trinder M; Bisanz JE; Chmiel JA; Burton JP; Reid G
    Gut Microbes; 2019; 10(3):321-333. PubMed ID: 30426826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals?
    January MC; Cutright TJ; Van Keulen H; Wei R
    Chemosphere; 2008 Jan; 70(3):531-7. PubMed ID: 17697697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro bioaccessibility and bioavailability of heavy metals in mineral clay complex used in natural health products.
    Chen X; Singh A; Kitts DD
    Sci Rep; 2020 Jun; 10(1):8823. PubMed ID: 32483124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.).
    Lam CM; Lai HY
    Ecotoxicol Environ Saf; 2018 Oct; 162():563-570. PubMed ID: 30029102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium and lead accumulations and agronomic quality of a newly bred pollution-safe cultivar (PSC) of water spinach.
    Huang YY; Mu YX; He CT; Fu HL; Wang XS; Gong FY; Yang ZY
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):11152-11162. PubMed ID: 29417480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.).
    Wang J; Yuan J; Yang Z; Huang B; Zhou Y; Xin J; Gong Y; Yu H
    J Agric Food Chem; 2009 Oct; 57(19):8942-9. PubMed ID: 19739670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach.
    Wang X; Cai D; Ji M; Chen Z; Yao L; Han H
    Sci Total Environ; 2022 May; 819():153242. PubMed ID: 35051479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO; Ma LQ
    Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach.
    Hseu ZY; Jien SH; Wang SH; Deng HW
    J Environ Manage; 2013 Mar; 117():58-64. PubMed ID: 23353878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge).
    Kadukova J; Manousaki E; Kalogerakis N
    Int J Phytoremediation; 2008; 10(1):31-46. PubMed ID: 18709930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotypic differences in arsenic, mercury, lead and cadmium in milled rice (Oryza sativa L.).
    Jiang S; Shi C; Wu J
    Int J Food Sci Nutr; 2012 Jun; 63(4):468-75. PubMed ID: 22106866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.