These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22842037)

  • 21. Multiscale constitutive model with progressive recruitment for nanofibrous scaffolds.
    Caballero DE; Montini-Ballarin F; Gimenez JM; Urquiza SA
    J Mech Behav Biomed Mater; 2019 Oct; 98():225-234. PubMed ID: 31271979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell.
    Chen ZG; Wang PW; Wei B; Mo XM; Cui FZ
    Acta Biomater; 2010 Feb; 6(2):372-82. PubMed ID: 19632361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical and biological properties of keratose biomaterials.
    de Guzman RC; Merrill MR; Richter JR; Hamzi RI; Greengauz-Roberts OK; Van Dyke ME
    Biomaterials; 2011 Nov; 32(32):8205-17. PubMed ID: 21835462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and evaluation of biomimetic-synthetic nanofibrous composites for soft tissue regeneration.
    Gee AO; Baker BM; Silverstein AM; Montero G; Esterhai JL; Mauck RL
    Cell Tissue Res; 2012 Mar; 347(3):803-13. PubMed ID: 22287042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement.
    Holloway JL; Lowman AM; Palmese GR
    Acta Biomater; 2010 Dec; 6(12):4716-24. PubMed ID: 20601243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytically derived material properties of multilaminated extracellular matrix devices using the ball-burst test.
    Freytes DO; Rundell AE; Vande Geest J; Vorp DA; Webster TJ; Badylak SF
    Biomaterials; 2005 Sep; 26(27):5518-31. PubMed ID: 15860208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical characteristics of solid-freeform-fabricated porous calcium polyphosphate structures with oriented stacked layers.
    Shanjani Y; Hu Y; Pilliar RM; Toyserkani E
    Acta Biomater; 2011 Apr; 7(4):1788-96. PubMed ID: 21185409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun PCL in vitro: a microstructural basis for mechanical property changes.
    Johnson J; Niehaus A; Nichols S; Lee D; Koepsel J; Anderson D; Lannutti J
    J Biomater Sci Polym Ed; 2009; 20(4):467-81. PubMed ID: 19228448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density.
    Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A
    J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.
    Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI
    Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy.
    Hang F; Lu D; Bailey RJ; Jimenez-Palomar I; Stachewicz U; Cortes-Ballesteros B; Davies M; Zech M; Bödefeld C; Barber AH
    Nanotechnology; 2011 Sep; 22(36):365708. PubMed ID: 21844643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity.
    Wan C; Chen B
    Biomed Mater; 2011 Oct; 6(5):055010. PubMed ID: 21921319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilizing natural macromolecule on PLGA electrospun nanofiber with surface entrapment and entrapment-graft techniques.
    Meng ZX; Zeng QT; Sun ZZ; Xu XX; Wang YS; Zheng W; Zheng YF
    Colloids Surf B Biointerfaces; 2012 Jun; 94():44-50. PubMed ID: 22326650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.
    Farhat WA; Chen J; Haig J; Antoon R; Litman J; Sherman C; Derwin K; Yeger H
    Biomed Mater; 2008 Jun; 3(2):025015. PubMed ID: 18523340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.