These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22842037)

  • 61. Scaling forms for relaxation times of the fiber bundle model.
    Roy C; Kundu S; Manna SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062137. PubMed ID: 23848657
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Layered Elastomeric Fibrous Scaffolds: An In-Silico Study of the Achievable Range of Mechanical Behaviors.
    Carleton JB; Rodin GJ; Sacks MS
    ACS Biomater Sci Eng; 2017 Nov; 3(11):2907-2921. PubMed ID: 33418712
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Aging-related structural change in 3D extracellular matrix affects its mechanics.
    Park S; Kim B
    Med Eng Phys; 2022 Aug; 106():103843. PubMed ID: 35926954
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of water desorption on the rheology and dynamic response of human hair to a non-contact impact.
    Jamart J; Djaghloul M; Bergheau JM; Zahouani H
    J Mech Behav Biomed Mater; 2015 Jun; 46():176-83. PubMed ID: 25792415
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Displacement Propagation in Fibrous Networks Due to Local Contraction.
    Grimmer P; Notbohm J
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29238811
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Armadillo armor: mechanical testing and micro-structural evaluation.
    Chen IH; Kiang JH; Correa V; Lopez MI; Chen PY; McKittrick J; Meyers MA
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):713-22. PubMed ID: 21565719
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Heterogeneity and nonaffinity of cell-induced matrix displacements.
    Burkel B; Proestaki M; Tyznik S; Notbohm J
    Phys Rev E; 2018 Nov; 98(5):. PubMed ID: 30619988
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nonlinear Mechanical Properties of Prestressed Branched Fibrous Networks.
    Hatami-Marbini H; Rohanifar M
    Biophys J; 2021 Feb; 120(3):527-538. PubMed ID: 33412143
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of the Interfiber Bonding on the Mechanical Behavior of Electrospun Fibrous Mats.
    Chavoshnejad P; Razavi MJ
    Sci Rep; 2020 May; 10(1):7709. PubMed ID: 32382109
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functional Nanofibrous Biomaterials of Tailored Structures for Drug Delivery-A Critical Review.
    Li Z; Mei S; Dong Y; She F; Li Y; Li P; Kong L
    Pharmaceutics; 2020 Jun; 12(6):. PubMed ID: 32521627
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Compared prediction of the experimental failure of a thin fibrous tissue by two macroscopic damage models.
    Bel-Brunon A; Coret M; Bruyère-Garnier K; Combescure A
    J Mech Behav Biomed Mater; 2013 Nov; 27():262-72. PubMed ID: 23773977
    [TBL] [Abstract][Full Text] [Related]  

  • 72. How the Nonwoven Polymer Volume Microstructure Is Transformed under Tension in an Aqueous Environment.
    Khramtsova E; Morokov E; Antipova C; Krasheninnikov S; Lukanina K; Grigoriev T
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080601
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nanofibrous material from hyaluronan derivatives preserving fibrous structure in aqueous environment.
    Skuhrovcová K; Kotzianová A; Bardoňová L; Židek O; Toropitsyn E; Vágnerová H; Čápová A; Dostálová K; Hermannová M; Pokorný M; Velebný V
    Carbohydr Polym; 2022 Jan; 276():118785. PubMed ID: 34823796
    [TBL] [Abstract][Full Text] [Related]  

  • 74. From kinetic-structure analysis to engineering crystalline fiber networks in soft materials.
    Wang RY; Wang P; Li JL; Yuan B; Liu Y; Li L; Liu XY
    Phys Chem Chem Phys; 2013 Mar; 15(9):3313-9. PubMed ID: 23361314
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor.
    Rudykh S; Ortiz C; Boyce MC
    Soft Matter; 2015 Apr; 11(13):2547-54. PubMed ID: 25715866
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanical and Thermal Behavior of Fibrous Carbon Materials.
    Karakashov B; Taghite M; Kouitat R; Fierro V; Celzard A
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916433
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Design, fabrication and characterization of a pure uniaxial microloading system for biologic testing.
    King JD; York SL; Saunders MM
    Med Eng Phys; 2016 Apr; 38(4):411-6. PubMed ID: 26904918
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Parameters controlling the strength of stochastic fibrous materials.
    Deogekar S; Islam MR; Picu RC
    Int J Solids Struct; 2019 Aug; 168():194-202. PubMed ID: 31395989
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nonlinear fiber-bundle-cells-based phenomenological modeling of human tissue samples.
    Vas LM; Tamás P; Bognár E; Nagy P; Késmárszky R; Pap K; Szebényi G
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1803-1823. PubMed ID: 36287315
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dip-and-Drag Lateral Force Spectroscopy for Measuring Adhesive Forces between Nanofibers.
    Dolan GK; Yakubov GE; Greene GW; Amiralian N; Annamalai PK; Martin DJ; Stokes JR
    Langmuir; 2016 Dec; 32(50):13340-13348. PubMed ID: 27993025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.