These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22842118)

  • 1. Coex-Rank: An approach incorporating co-expression information for combined analysis of microarray data.
    Cai J; Keen HL; Sigmund CD; Casavant TL
    J Integr Bioinform; 2012 Jul; 9(1):208. PubMed ID: 22842118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis.
    Hoffmann R; Seidl T; Dugas M
    Genome Biol; 2002 Jun; 3(7):RESEARCH0033. PubMed ID: 12184807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size.
    Vasiliu D; Clamons S; McDonough M; Rabe B; Saha M
    PLoS One; 2015; 10(3):e0118198. PubMed ID: 25738861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting normalization genes for small diagnostic microarrays.
    Jaeger J; Spang R
    BMC Bioinformatics; 2006 Aug; 7():388. PubMed ID: 16925821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of normalization methods for analysis of microarrays containing a high degree of gene effects.
    Ni TT; Lemon WJ; Shyr Y; Zhong TP
    BMC Bioinformatics; 2008 Nov; 9():505. PubMed ID: 19040742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes.
    Maulik U; Mukhopadhyay A; Bandyopadhyay S
    BMC Bioinformatics; 2009 Jan; 10():27. PubMed ID: 19154590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical Test of Expression Pattern (STEPath): a new strategy to integrate gene expression data with genomic information in individual and meta-analysis studies.
    Martini P; Risso D; Sales G; Romualdi C; Lanfranchi G; Cagnin S
    BMC Bioinformatics; 2011 Apr; 12():92. PubMed ID: 21481242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the feasibility of next-generation sequencing and microarray data meta-analysis.
    Wu PY; Phan JH; Wang MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7618-21. PubMed ID: 22256102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding differentially expressed genes in two-channel DNA microarray datasets: how to increase reliability of data preprocessing.
    Rotter A; Hren M; Baebler S; Blejec A; Gruden K
    OMICS; 2008 Sep; 12(3):171-82. PubMed ID: 18771401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput processing and normalization of one-color microarrays for transcriptional meta-analyses.
    Dozmorov MG; Wren JD
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S2. PubMed ID: 22166002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data.
    Breitling R; Herzyk P
    J Bioinform Comput Biol; 2005 Oct; 3(5):1171-89. PubMed ID: 16278953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rank product method with two samples.
    Koziol JA
    FEBS Lett; 2010 Nov; 584(21):4481-4. PubMed ID: 20951135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A non-transformation method for identifying differentially expressed genes from cDNA microarrays.
    Zhang JG; Yin ZJ; Zhang Q
    Yi Chuan Xue Bao; 2006 Jan; 33(1):80-8. PubMed ID: 16450591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using pre-existing microarray datasets to increase experimental power: application to insulin resistance.
    Daigle BJ; Deng A; McLaughlin T; Cushman SW; Cam MC; Reaven G; Tsao PS; Altman RB
    PLoS Comput Biol; 2010 Mar; 6(3):e1000718. PubMed ID: 20361040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fold change rank ordering statistics: a new method for detecting differentially expressed genes.
    Dembélé D; Kastner P
    BMC Bioinformatics; 2014 Jan; 15():14. PubMed ID: 24423217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of statistical methods for detecting differential expression in microarray data].
    Shan WJ; Tong CF; Shi JS
    Yi Chuan; 2008 Dec; 30(12):1640-6. PubMed ID: 19073583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel implementation of conditional co-regulation by graph theory to derive co-expressed genes from microarray data.
    Rawat A; Seifert GJ; Deng Y
    BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S7. PubMed ID: 18793471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of long oligonucleotides for gene expression microarrays using weighted rank-sum strategy.
    Hu G; Llinás M; Li J; Preiser PR; Bozdech Z
    BMC Bioinformatics; 2007 Sep; 8():350. PubMed ID: 17880708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative rank-order normalization of gene expression microarray data.
    Welsh EA; Eschrich SA; Berglund AE; Fenstermacher DA
    BMC Bioinformatics; 2013 May; 14():153. PubMed ID: 23647742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merging two gene-expression studies via cross-platform normalization.
    Shabalin AA; Tjelmeland H; Fan C; Perou CM; Nobel AB
    Bioinformatics; 2008 May; 24(9):1154-60. PubMed ID: 18325927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.