These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22842497)

  • 1. BODIPY dyes with β-conjugation and their applications for high-efficiency inverted small molecule solar cells.
    Lin HY; Huang WC; Chen YC; Chou HH; Hsu CY; Lin JT; Lin HW
    Chem Commun (Camb); 2012 Sep; 48(71):8913-5. PubMed ID: 22842497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance solution-processed solar cells and ambipolar behavior in organic field-effect transistors with thienyl-BODIPY scaffoldings.
    Bura T; Leclerc N; Fall S; Lévêque P; Heiser T; Retailleau P; Rihn S; Mirloup A; Ziessel R
    J Am Chem Soc; 2012 Oct; 134(42):17404-7. PubMed ID: 23035618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics.
    Poe AM; Della Pelle AM; Subrahmanyam AV; White W; Wantz G; Thayumanavan S
    Chem Commun (Camb); 2014 Mar; 50(22):2913-5. PubMed ID: 24492524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A direct arylation-derived DPP-based small molecule for solution-processed organic solar cells.
    Liu SY; Fu WF; Xu JQ; Fan CC; Jiang H; Shi M; Li HY; Chen JW; Cao Y; Chen HZ
    Nanotechnology; 2014 Jan; 25(1):014006. PubMed ID: 24334482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-processed organic solar cells from dye molecules: an investigation of diketopyrrolopyrrole:vinazene heterojunctions.
    Walker B; Han X; Kim C; Sellinger A; Nguyen TQ
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):244-50. PubMed ID: 22136108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverted heterojunction solar cells incorporating fullerene/polythiophene composite core/shell nanorod arrays.
    Wang HS; Chen SY; Su MH; Wang YL; Wei KH
    Nanotechnology; 2010 Apr; 21(14):145203. PubMed ID: 20220219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of naphtho[1,2-b:5,6-b']dithiophene based novel small molecules for efficient bulk-heterojunction organic solar cells.
    Dutta P; Yang W; Eom SH; Lee WH; Kang IN; Lee SH
    Chem Commun (Camb); 2012 Jan; 48(4):573-5. PubMed ID: 22064821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bodipy-backboned polymers as electron donor in bulk heterojunction solar cells.
    Kim B; Ma B; Donuru VR; Liu H; Fréchet JM
    Chem Commun (Camb); 2010 Jun; 46(23):4148-50. PubMed ID: 20390122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational molecular engineering towards efficient non-fullerene small molecule acceptors for inverted bulk heterojunction organic solar cells.
    Zheng YQ; Dai YZ; Zhou Y; Wang JY; Pei J
    Chem Commun (Camb); 2014 Feb; 50(13):1591-4. PubMed ID: 24419397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient squaraine-based solution processable bulk-heterojunction solar cells.
    Silvestri F; Irwin MD; Beverina L; Facchetti A; Pagani GA; Marks TJ
    J Am Chem Soc; 2008 Dec; 130(52):17640-1. PubMed ID: 19061411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dithienogermole as a fused electron donor in bulk heterojunction solar cells.
    Amb CM; Chen S; Graham KR; Subbiah J; Small CE; So F; Reynolds JR
    J Am Chem Soc; 2011 Jul; 133(26):10062-5. PubMed ID: 21644517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared absorbing merocyanine dyes for bulk heterojunction solar cells.
    Bürckstümmer H; Kronenberg NM; Meerholz K; Würthner F
    Org Lett; 2010 Aug; 12(16):3666-9. PubMed ID: 20704411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triplet exciton generation in bulk-heterojunction solar cells based on endohedral fullerenes.
    Liedtke M; Sperlich A; Kraus H; Baumann A; Deibel C; Wirix MJ; Loos J; Cardona CM; Dyakonov V
    J Am Chem Soc; 2011 Jun; 133(23):9088-94. PubMed ID: 21542646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage.
    Khlyabich PP; Burkhart B; Thompson BC
    J Am Chem Soc; 2011 Sep; 133(37):14534-7. PubMed ID: 21854034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum(II)-bis(aryleneethynylene) complexes for solution-processible molecular bulk heterojunction solar cells.
    Dai FR; Zhan HM; Liu Q; Fu YY; Li JH; Wang QW; Xie Z; Wang L; Yan F; Wong WY
    Chemistry; 2012 Jan; 18(5):1502-11. PubMed ID: 22213333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers.
    Khlyabich PP; Burkhart B; Thompson BC
    J Am Chem Soc; 2012 Jun; 134(22):9074-7. PubMed ID: 22587584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BODIPY derivatives as donor materials for bulk heterojunction solar cells.
    Rousseau T; Cravino A; Bura T; Ulrich G; Ziessel R; Roncali J
    Chem Commun (Camb); 2009 Apr; (13):1673-5. PubMed ID: 19294258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.
    Ko S; Hoke ET; Pandey L; Hong S; Mondal R; Risko C; Yi Y; Noriega R; McGehee MD; Brédas JL; Salleo A; Bao Z
    J Am Chem Soc; 2012 Mar; 134(11):5222-32. PubMed ID: 22385287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.