BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 22842512)

  • 1. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices.
    Haigh SJ; Gholinia A; Jalil R; Romani S; Britnell L; Elias DC; Novoselov KS; Ponomarenko LA; Geim AK; Gorbachev R
    Nat Mater; 2012 Sep; 11(9):764-7. PubMed ID: 22842512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures.
    Heilmann M; Prikhodko AS; Hanke M; Sabelfeld A; Borgardt NI; Lopes JMJ
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8897-8907. PubMed ID: 31971775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure.
    Sediri H; Pierucci D; Hajlaoui M; Henck H; Patriarche G; Dappe YJ; Yuan S; Toury B; Belkhou R; Silly MG; Sirotti F; Boutchich M; Ouerghi A
    Sci Rep; 2015 Nov; 5():16465. PubMed ID: 26585245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayer Lateral Heterostructures of Van Der Waals Crystals with Sharp, Carrier-Transparent Interfaces.
    Sutter E; Unocic RR; Idrobo JC; Sutter P
    Adv Sci (Weinh); 2022 Jan; 9(3):e2103830. PubMed ID: 34813175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wafer-Scale Programmed Assembly of One-Atom-Thick Crystals.
    Yang SJ; Jung JH; Lee E; Han E; Choi MY; Jung D; Choi S; Park JH; Oh D; Noh S; Kim KJ; Huang PY; Hwang CC; Kim CJ
    Nano Lett; 2022 Feb; 22(4):1518-1524. PubMed ID: 35119873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures.
    Diaz HC; Avila J; Chen C; Addou R; Asensio MC; Batzill M
    Nano Lett; 2015 Feb; 15(2):1135-40. PubMed ID: 25629211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hot pick-up technique for batch assembly of van der Waals heterostructures.
    Pizzocchero F; Gammelgaard L; Jessen BS; Caridad JM; Wang L; Hone J; Bøggild P; Booth TJ
    Nat Commun; 2016 Jun; 7():11894. PubMed ID: 27305833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope.
    Alexeev EM; Catanzaro A; Skrypka OV; Nayak PK; Ahn S; Pak S; Lee J; Sohn JI; Novoselov KS; Shin HS; Tartakovskii AI
    Nano Lett; 2017 Sep; 17(9):5342-5349. PubMed ID: 28753319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-emitting diodes by band-structure engineering in van der Waals heterostructures.
    Withers F; Del Pozo-Zamudio O; Mishchenko A; Rooney AP; Gholinia A; Watanabe K; Taniguchi T; Haigh SJ; Geim AK; Tartakovskii AI; Novoselov KS
    Nat Mater; 2015 Mar; 14(3):301-6. PubMed ID: 25643033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals.
    Kretinin AV; Cao Y; Tu JS; Yu GL; Jalil R; Novoselov KS; Haigh SJ; Gholinia A; Mishchenko A; Lozada M; Georgiou T; Woods CR; Withers F; Blake P; Eda G; Wirsig A; Hucho C; Watanabe K; Taniguchi T; Geim AK; Gorbachev RV
    Nano Lett; 2014 Jun; 14(6):3270-6. PubMed ID: 24844319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable crystal symmetry in graphene-boron nitride heterostructures with coexisting moiré superlattices.
    Finney NR; Yankowitz M; Muraleetharan L; Watanabe K; Taniguchi T; Dean CR; Hone J
    Nat Nanotechnol; 2019 Nov; 14(11):1029-1034. PubMed ID: 31570805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.
    Azizi A; Eichfeld S; Geschwind G; Zhang K; Jiang B; Mukherjee D; Hossain L; Piasecki AF; Kabius B; Robinson JA; Alem N
    ACS Nano; 2015 May; 9(5):4882-90. PubMed ID: 25885122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Interactions in van der Waals Heterostructures of MoS
    Li H; Wu JB; Ran F; Lin ML; Liu XL; Zhao Y; Lu X; Xiong Q; Zhang J; Huang W; Zhang H; Tan PH
    ACS Nano; 2017 Nov; 11(11):11714-11723. PubMed ID: 29068659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric Genome of van der Waals Heterostructures.
    Andersen K; Latini S; Thygesen KS
    Nano Lett; 2015 Jul; 15(7):4616-21. PubMed ID: 26047386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer.
    Boandoh S; Agyapong-Fordjour FO; Choi SH; Lee JS; Park JH; Ko H; Han G; Yun SJ; Park S; Kim YM; Yang W; Lee YH; Kim SM; Kim KK
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1579-1586. PubMed ID: 30525400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures.
    Luo Y; Engelke R; Mattheakis M; Tamagnone M; Carr S; Watanabe K; Taniguchi T; Kaxiras E; Kim P; Wilson WL
    Nat Commun; 2020 Aug; 11(1):4209. PubMed ID: 32826888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices.
    Masubuchi S; Morimoto M; Morikawa S; Onodera M; Asakawa Y; Watanabe K; Taniguchi T; Machida T
    Nat Commun; 2018 Apr; 9(1):1413. PubMed ID: 29650955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast Optoelectronic Processes in 1D Radial van der Waals Heterostructures: Carbon, Boron Nitride, and MoS
    Burdanova MG; Kashtiban RJ; Zheng Y; Xiang R; Chiashi S; Woolley JM; Staniforth M; Sakamoto-Rablah E; Xie X; Broome M; Sloan J; Anisimov A; Kauppinen EI; Maruyama S; Lloyd-Hughes J
    Nano Lett; 2020 May; 20(5):3560-3567. PubMed ID: 32324411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic band-structure tuning of graphene moiré superlattices with pressure.
    Yankowitz M; Jung J; Laksono E; Leconte N; Chittari BL; Watanabe K; Taniguchi T; Adam S; Graf D; Dean CR
    Nature; 2018 May; 557(7705):404-408. PubMed ID: 29769674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.
    Cao Y; Fatemi V; Demir A; Fang S; Tomarken SL; Luo JY; Sanchez-Yamagishi JD; Watanabe K; Taniguchi T; Kaxiras E; Ashoori RC; Jarillo-Herrero P
    Nature; 2018 Apr; 556(7699):80-84. PubMed ID: 29512654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.