These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 22842523)

  • 1. Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells.
    Nagy JI
    Brain Res; 2012 Dec; 1487():107-22. PubMed ID: 22771400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity of the supramammillary-hippocampal pathways: evidence for a unique GABAergic neurotransmitter phenotype and regional differences.
    Soussi R; Zhang N; Tahtakran S; Houser CR; Esclapez M
    Eur J Neurosci; 2010 Sep; 32(5):771-85. PubMed ID: 20722723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented Inhibition from Cannabinoid-Sensitive Interneurons Diminishes CA1 Output after Traumatic Brain Injury.
    Johnson BN; Palmer CP; Bourgeois EB; Elkind JA; Putnam BJ; Cohen AS
    Front Cell Neurosci; 2014; 8():435. PubMed ID: 25565968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal and structural sensitivities of major biomarkers for detecting neuropathology after traumatic brain injury in the mouse.
    Xiong G; Jean I; Farrugia AM; Metheny H; Johnson BN; Cohen NA; Cohen AS
    Front Neurosci; 2024; 18():1339262. PubMed ID: 38356651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and verification of neurodegeneration after traumatic brain injury in the mouse: Immunohistochemical staining for amyloid precursor protein.
    Xiong G; Metheny H; Hood K; Jean I; Farrugia AM; Johnson BN; Tummala SR; Cohen NA; Cohen AS
    Brain Pathol; 2023 Nov; 33(6):e13163. PubMed ID: 37156643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basolateral Amygdala Regulates EEG Theta-activity During Rapid Eye Movement Sleep.
    Machida M; Sweeten BLW; Adkins AM; Wellman LL; Sanford LD
    Neuroscience; 2021 Aug; 468():176-185. PubMed ID: 34147563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blocking Cross-Species Secondary Binding When Performing Double Immunostaining With Mouse and Rat Primary Antibodies.
    Mao S; Xiong G; Johnson BN; Cohen NA; Cohen AS
    Front Neurosci; 2021; 15():579859. PubMed ID: 34113227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine Sulfoxide Reductase-B3 (MsrB3) Protein Associates with Synaptic Vesicles and its Expression Changes in the Hippocampi of Alzheimer's Disease Patients.
    Adams SL; Benayoun L; Tilton K; Chavez OR; Himali JJ; Blusztajn JK; Seshadri S; Delalle I
    J Alzheimers Dis; 2017; 60(1):43-56. PubMed ID: 28777754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein.
    Mao S; Xiong G; Zhang L; Dong H; Liu B; Cohen NA; Cohen AS
    Front Neuroanat; 2016; 10():54. PubMed ID: 27242450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized Protocol of Methanol Treatment for Immunofluorescent Staining in Fixed Brain Slices.
    Yuan F; Xiong G; Cohen NA; Cohen AS
    Appl Immunohistochem Mol Morphol; 2017 Mar; 25(3):221-224. PubMed ID: 26509907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-specific immunostaining by a rabbit antibody against gustducin α subunit in mouse brain.
    Xiong G; Redding K; Chen B; Cohen AS; Cohen NA
    J Histochem Cytochem; 2015 Feb; 63(2):79-87. PubMed ID: 25411190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical transcriptome of G protein-coupled receptors leads to the identification of a novel therapeutic candidate GPR52 for psychiatric disorders.
    Komatsu H; Maruyama M; Yao S; Shinohara T; Sakuma K; Imaichi S; Chikatsu T; Kuniyeda K; Siu FK; Peng LS; Zhuo K; Mun LS; Han TM; Matsumoto Y; Hashimoto T; Miyajima N; Itoh Y; Ogi K; Habata Y; Mori M
    PLoS One; 2014; 9(2):e90134. PubMed ID: 24587241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence against GABA release from glutamatergic mossy fiber terminals in the developing hippocampus.
    Uchigashima M; Fukaya M; Watanabe M; Kamiya H
    J Neurosci; 2007 Jul; 27(30):8088-100. PubMed ID: 17652600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic but not postsynaptic GABA signaling at unitary mossy fiber synapses.
    Cabezas C; Irinopoulou T; Gauvain G; Poncer JC
    J Neurosci; 2012 Aug; 32(34):11835-40. PubMed ID: 22915124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-Dependent Compartmentalization of the Corelease of Glutamate and GABA from the Mossy Fibers.
    Galván EJ; Gutiérrez R
    J Neurosci; 2017 Jan; 37(3):701-714. PubMed ID: 28100750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GABAergic phenotype of the "glutamatergic" granule cells of the dentate gyrus.
    Gutiérrez R
    Prog Neurobiol; 2003 Dec; 71(5):337-58. PubMed ID: 14757115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers.
    Gutiérrez R
    J Chem Neuroanat; 2016 Apr; 73():9-20. PubMed ID: 26703784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA and glutamate are not colocalized in mossy fiber terminals of developing rodent hippocampus.
    Xiong G; Zhang L; Mojsilovic-Petrovic J; Arroyo E; Elkind J; Kundu S; Johnson B; Smith CJ; Cohen NA; Grady SM; Cohen AS
    Brain Res; 2012 Sep; 1474():40-9. PubMed ID: 22842523
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.