These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 22842535)

  • 41. Structural involvement in type 1 and type 2 diabetic nephropathy.
    Dalla Vestra M; Saller A; Bortoloso E; Mauer M; Fioretto P
    Diabetes Metab; 2000 Jul; 26 Suppl 4():8-14. PubMed ID: 10922968
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of megalin, a proximal tubular endocytic receptor, in the pathogenesis of diabetic and metabolic syndrome-related nephropathies: protein metabolic overload hypothesis.
    Saito A; Takeda T; Hama H; Oyama Y; Hosaka K; Tanuma A; Kaseda R; Ueno M; Nishi S; Ogasawara S; Gondaira F; Suzuki Y; Gejyo F
    Nephrology (Carlton); 2005 Oct; 10 Suppl():S26-31. PubMed ID: 16174284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of transforming growth factor beta in diabetic nephropathy.
    Ziyadeh FN
    Exp Nephrol; 1994; 2(2):137. PubMed ID: 8082013
    [No Abstract]   [Full Text] [Related]  

  • 44. Inflammation and the pathogenesis of diabetic nephropathy.
    Wada J; Makino H
    Clin Sci (Lond); 2013 Feb; 124(3):139-52. PubMed ID: 23075333
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diabetic kidney disease in the db/db mouse.
    Sharma K; McCue P; Dunn SR
    Am J Physiol Renal Physiol; 2003 Jun; 284(6):F1138-44. PubMed ID: 12736165
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diabetic nephropathy and proximal tubular damage.
    Tang SC; Yiu WH; Lin M; Lai KN
    J Ren Nutr; 2015 Mar; 25(2):230-3. PubMed ID: 25578352
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microvascular basement membranes in diabetes mellitus.
    Tsilibary EC
    J Pathol; 2003 Jul; 200(4):537-46. PubMed ID: 12845621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of Renal GLUT2 by the Cannabinoid-1 Receptor: Implications for the Treatment of Diabetic Nephropathy.
    Hinden L; Udi S; Drori A; Gammal A; Nemirovski A; Hadar R; Baraghithy S; Permyakova A; Geron M; Cohen M; Tsytkin-Kirschenzweig S; Riahi Y; Leibowitz G; Nahmias Y; Priel A; Tam J
    J Am Soc Nephrol; 2018 Feb; 29(2):434-448. PubMed ID: 29030466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Do Endocannabinoids Regulate Glucose Reabsorption in the Kidney?
    Hinden L; Tam J
    Nephron; 2019; 143(1):24-27. PubMed ID: 30636250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients.
    Steinke JM; Mauer M;
    Pediatr Endocrinol Rev; 2008 Aug; 5 Suppl 4():958-63. PubMed ID: 18806710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diabetic nephropathy and proximal tubule ROS: challenging our glomerulocentricity.
    Bagby SP
    Kidney Int; 2007 Jun; 71(12):1199-202. PubMed ID: 17554351
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Iron-Klotho-VDR Axis Is a Major Determinant of Proximal Convoluted Tubule Injury in Haptoglobin 2-2 Genotype Diabetic Nephropathy Patients and Mice.
    Dahan I; Thawho N; Farber E; Nakhoul N; Asleh R; Levy AP; Li YC; Ben-Izhak O; Nakhoul F
    J Diabetes Res; 2018; 2018():7163652. PubMed ID: 30250850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy.
    Lanaspa MA; Ishimoto T; Cicerchi C; Tamura Y; Roncal-Jimenez CA; Chen W; Tanabe K; Andres-Hernando A; Orlicky DJ; Finol E; Inaba S; Li N; Rivard CJ; Kosugi T; Sanchez-Lozada LG; Petrash JM; Sautin YY; Ejaz AA; Kitagawa W; Garcia GE; Bonthron DT; Asipu A; Diggle CP; Rodriguez-Iturbe B; Nakagawa T; Johnson RJ
    J Am Soc Nephrol; 2014 Nov; 25(11):2526-38. PubMed ID: 24876114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diabetic nephropathy: pathogenesis and treatment.
    Adler S; Nast C; Artishevsky A
    Annu Rev Med; 1993; 44():303-15. PubMed ID: 8476252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New developments concerning the proximal tubule in diabetic nephropathy: in vitro models and mechanisms.
    Slyne J; Slattery C; McMorrow T; Ryan MP
    Nephrol Dial Transplant; 2015 Aug; 30 Suppl 4():iv60-7. PubMed ID: 26209740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proximal Tubule mTORC1 Is a Central Player in the Pathophysiology of Diabetic Nephropathy and Its Correction by SGLT2 Inhibitors.
    Kogot-Levin A; Hinden L; Riahi Y; Israeli T; Tirosh B; Cerasi E; Mizrachi EB; Tam J; Mosenzon O; Leibowitz G
    Cell Rep; 2020 Jul; 32(4):107954. PubMed ID: 32726619
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kidney atrophy vs hypertrophy in diabetes: which cells are involved?
    Habib SL
    Cell Cycle; 2018; 17(14):1683-1687. PubMed ID: 29995580
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of the potassium channel KCa3.1 in diabetic nephropathy.
    Huang C; Pollock CA; Chen XM
    Clin Sci (Lond); 2014 Oct; 127(7):423-33. PubMed ID: 24963668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drug discovery for diabetic nephropathy: trying the leap from mouse to man.
    Breyer MD
    Semin Nephrol; 2012 Sep; 32(5):445-51. PubMed ID: 23062985
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of Diabetic Stress Conditions on Renal Cell Metabolome.
    Lagies S; Pichler R; Bork T; Kaminski MM; Troendle K; Zimmermann S; Huber TB; Walz G; Lienkamp SS; Kammerer B
    Cells; 2019 Sep; 8(10):. PubMed ID: 31554337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.