These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Hybrid Surface Passivation for Retrieving Charge Collection Efficiency of Colloidal Quantum Dot Photovoltaics. Yang J; Oh JT; Kim M; Song H; Boukhvalov DW; Lee SH; Choi H; Yi W ACS Appl Mater Interfaces; 2020 Sep; 12(39):43576-43585. PubMed ID: 32876435 [TBL] [Abstract][Full Text] [Related]
24. Solar cells based on inks of n-type colloidal quantum dots. Ning Z; Dong H; Zhang Q; Voznyy O; Sargent EH ACS Nano; 2014 Oct; 8(10):10321-7. PubMed ID: 25225786 [TBL] [Abstract][Full Text] [Related]
25. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors. Biondi M; Choi MJ; Wang Z; Wei M; Lee S; Choubisa H; Sagar LK; Sun B; Baek SW; Chen B; Todorović P; Najarian AM; Sedighian Rasouli A; Nam DH; Vafaie M; Li YC; Bertens K; Hoogland S; Voznyy O; García de Arquer FP; Sargent EH Adv Mater; 2021 Aug; 33(33):e2101056. PubMed ID: 34245178 [TBL] [Abstract][Full Text] [Related]
26. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Lan X; Voznyy O; García de Arquer FP; Liu M; Xu J; Proppe AH; Walters G; Fan F; Tan H; Liu M; Yang Z; Hoogland S; Sargent EH Nano Lett; 2016 Jul; 16(7):4630-4. PubMed ID: 27351104 [TBL] [Abstract][Full Text] [Related]
27. Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells. Woo HK; Kang MS; Park T; Bang J; Jeon S; Lee WS; Ahn J; Cho G; Ko DK; Kim Y; Ha DH; Oh SJ Nanoscale; 2019 Oct; 11(37):17498-17505. PubMed ID: 31532437 [TBL] [Abstract][Full Text] [Related]
28. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation. Huang J; Xu B; Yuan C; Chen H; Sun J; Sun L; Agren H ACS Appl Mater Interfaces; 2014 Nov; 6(21):18808-15. PubMed ID: 25310596 [TBL] [Abstract][Full Text] [Related]
29. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange. Aqoma H; Al Mubarok M; Hadmojo WT; Lee EH; Kim TW; Ahn TK; Oh SH; Jang SY Adv Mater; 2017 May; 29(19):. PubMed ID: 28266746 [TBL] [Abstract][Full Text] [Related]
30. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics. Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158 [TBL] [Abstract][Full Text] [Related]
31. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells. Kim Y; Bicanic K; Tan H; Ouellette O; Sutherland BR; García de Arquer FP; Jo JW; Liu M; Sun B; Liu M; Hoogland S; Sargent EH Nano Lett; 2017 Apr; 17(4):2349-2353. PubMed ID: 28287738 [TBL] [Abstract][Full Text] [Related]
32. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance. Kirmani AR; Carey GH; Abdelsamie M; Yan B; Cha D; Rollny LR; Cui X; Sargent EH; Amassian A Adv Mater; 2014 Jul; 26(27):4717-23. PubMed ID: 24894800 [TBL] [Abstract][Full Text] [Related]
33. Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. Choi J; Kim Y; Jo JW; Kim J; Sun B; Walters G; García de Arquer FP; Quintero-Bermudez R; Li Y; Tan CS; Quan LN; Kam APT; Hoogland S; Lu Z; Voznyy O; Sargent EH Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671721 [TBL] [Abstract][Full Text] [Related]
34. Enhanced charge carrier transport properties in colloidal quantum dot solar cells Hong J; Hou B; Lim J; Pak S; Kim BS; Cho Y; Lee J; Lee YW; Giraud P; Lee S; Park JB; Morris SM; Snaith HJ; Sohn JI; Cha S; Kim JM J Mater Chem A Mater; 2016 Dec; 4(48):18769-18775. PubMed ID: 29308200 [TBL] [Abstract][Full Text] [Related]
35. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Biondi M; Choi MJ; Ouellette O; Baek SW; Todorović P; Sun B; Lee S; Wei M; Li P; Kirmani AR; Sagar LK; Richter LJ; Hoogland S; Lu ZH; García de Arquer FP; Sargent EH Adv Mater; 2020 Apr; 32(17):e1906199. PubMed ID: 32196136 [TBL] [Abstract][Full Text] [Related]
37. Hydroiodic Acid Additive Enhanced the Performance and Stability of PbS-QDs Solar Cells via Suppressing Hydroxyl Ligand. Yang X; Yang J; Khan J; Deng H; Yuan S; Zhang J; Xia Y; Deng F; Zhou X; Umar F; Jin Z; Song H; Cheng C; Sabry M; Tang J Nanomicro Lett; 2020 Jan; 12(1):37. PubMed ID: 34138233 [TBL] [Abstract][Full Text] [Related]
38. Role of Oxygen in Two-Step Thermal Annealing Processes for Enhancing the Performance of Colloidal Quantum Dot Solar Cells. Kim C; Baek SW; Kim J; Kim B; Lee C; Park JY; Lee JY ACS Appl Mater Interfaces; 2020 Dec; 12(52):57840-57846. PubMed ID: 33320537 [TBL] [Abstract][Full Text] [Related]
39. Transient Measurements and Simulations Correlate Exchange Ligand Concentration and Trap States in Colloidal Quantum Dot Photodetectors. Parmar DH; Rehl B; Atan O; Hoogland S; Sargent EH ACS Appl Mater Interfaces; 2023 Dec; 15(51):59931-59938. PubMed ID: 38085700 [TBL] [Abstract][Full Text] [Related]
40. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Kim GH; García de Arquer FP; Yoon YJ; Lan X; Liu M; Voznyy O; Jagadamma LK; Abbas AS; Yang Z; Fan F; Ip AH; Kanjanaboos P; Hoogland S; Kim JY; Sargent EH Nano Lett; 2015 Nov; 15(11):7691-6. PubMed ID: 26509283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]