These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 22842657)
1. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys. Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657 [TBL] [Abstract][Full Text] [Related]
2. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys. Ijaz MF; Kim HY; Hosoda H; Miyazaki S Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891 [TBL] [Abstract][Full Text] [Related]
3. Effect of thermomechanical treatment on the superelasticity of Ti-7.5Nb-4Mo-2Sn biomedical alloy. Zhang DC; Tan CG; Tang DM; Zhang Y; Lin JG; Wen CE Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():76-86. PubMed ID: 25280682 [TBL] [Abstract][Full Text] [Related]
4. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Fu J; Yamamoto A; Kim HY; Hosoda H; Miyazaki S Acta Biomater; 2015 Apr; 17():56-67. PubMed ID: 25676584 [TBL] [Abstract][Full Text] [Related]
5. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys. Ehtemam-Haghighi S; Liu Y; Cao G; Zhang LC Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():503-510. PubMed ID: 26706557 [TBL] [Abstract][Full Text] [Related]
6. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy. Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946 [TBL] [Abstract][Full Text] [Related]
7. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys. Kuroda PAB; Buzalaf MAR; Grandini CR Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():511-515. PubMed ID: 27287149 [TBL] [Abstract][Full Text] [Related]
9. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy. Fu J; Kim HY; Miyazaki S J Mech Behav Biomed Mater; 2017 Jan; 65():716-723. PubMed ID: 27750162 [TBL] [Abstract][Full Text] [Related]
10. Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys. Gabriel SB; Nunes CA; Soares Gde A Artif Organs; 2008 Apr; 32(4):299-304. PubMed ID: 18370944 [TBL] [Abstract][Full Text] [Related]
11. Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications. Bahl S; Das S; Suwas S; Chatterjee K J Mech Behav Biomed Mater; 2018 Feb; 78():124-133. PubMed ID: 29156291 [TBL] [Abstract][Full Text] [Related]
12. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Hao YL; Li SJ; Sun SY; Zheng CY; Yang R Acta Biomater; 2007 Mar; 3(2):277-86. PubMed ID: 17234466 [TBL] [Abstract][Full Text] [Related]
13. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants. Tavares AM; Ramos WS; de Blas JC; Lopes ES; Caram R; Batista WW; Souza SA J Mech Behav Biomed Mater; 2015 Nov; 51():74-87. PubMed ID: 26218870 [TBL] [Abstract][Full Text] [Related]
14. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. Zhao X; Niinomi M; Nakai M J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900 [TBL] [Abstract][Full Text] [Related]
15. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications. Chaves JM; Florêncio O; Silva PS; Marques PW; Afonso CR J Mech Behav Biomed Mater; 2015 Jun; 46():184-96. PubMed ID: 25796065 [TBL] [Abstract][Full Text] [Related]
16. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications. Nnamchi PS; Obayi CS; Todd I; Rainforth MW J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649 [TBL] [Abstract][Full Text] [Related]
17. Effects of elastic intramedullary nails composed of low Young's modulus Ti-Nb-Sn alloy on healing of tibial osteotomies in rabbits. Kogure A; Mori Y; Tanaka H; Kamimura M; Masahashi N; Hanada S; Itoi E J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):700-707. PubMed ID: 29920923 [TBL] [Abstract][Full Text] [Related]
18. Superelastic and shape memory properties of TixNb3Zr2Ta alloys. Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481 [TBL] [Abstract][Full Text] [Related]
19. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material. Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942 [TBL] [Abstract][Full Text] [Related]
20. Superelastic behavior of a β-type titanium alloy. Zhang DC; Mao YF; Yan M; Li JJ; Su EL; Li YL; Tan SW; Lin JG J Mech Behav Biomed Mater; 2013 Apr; 20():29-35. PubMed ID: 23455161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]