These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Heteronanojunctions with atomic size control using a lab-on-chip electrochemical approach with integrated microfluidics. Lunca Popa P; Dalmas G; Faramarzi V; Dayen JF; Majjad H; Kemp NT; Doudin B Nanotechnology; 2011 May; 22(21):215302. PubMed ID: 21451221 [TBL] [Abstract][Full Text] [Related]
8. Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device. Esquivel JP; Colomer-Farrarons J; Castellarnau M; Salleras M; del Campo FJ; Samitier J; Miribel-Català P; Sabaté N Lab Chip; 2012 Nov; 12(21):4232-5. PubMed ID: 22968667 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of disposable electrochemical devices using silver ink and office paper. de Araujo WR; Paixão TR Analyst; 2014 Jun; 139(11):2742-7. PubMed ID: 24715150 [TBL] [Abstract][Full Text] [Related]
10. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices. Fredrick SJ; Gross EM Bioanalysis; 2009 Apr; 1(1):31-6. PubMed ID: 21083185 [TBL] [Abstract][Full Text] [Related]
11. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851 [TBL] [Abstract][Full Text] [Related]
12. Packaging commercial CMOS chips for lab on a chip integration. Datta-Chaudhuri T; Abshire P; Smela E Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025 [TBL] [Abstract][Full Text] [Related]
13. 3D printed microfluidics for biological applications. Ho CM; Ng SH; Li KH; Yoon YJ Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523 [TBL] [Abstract][Full Text] [Related]
15. Amperometric noise at thin film band electrodes. Larsen ST; Heien ML; Taboryski R Anal Chem; 2012 Sep; 84(18):7744-9. PubMed ID: 22928986 [TBL] [Abstract][Full Text] [Related]
16. A universal spring-probe system for reliable probing of electrochemical lab-on-a-chip devices. Lee MK; Lee TJ; Choi HW; Shin SJ; Park JY; Lee SJ Sensors (Basel); 2014 Jan; 14(1):944-56. PubMed ID: 24406857 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical Detection in Stacked Paper Networks. Liu X; Lillehoj PB J Lab Autom; 2015 Aug; 20(4):506-10. PubMed ID: 25732354 [TBL] [Abstract][Full Text] [Related]
18. Reversible nanostructuration of microfluidic electrode devices by CNT magnetic co-entrapment. Herrasti Z; Martínez F; Baldrich E Lab Chip; 2015 Aug; 15(16):3269-73. PubMed ID: 26155767 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Noiphung J; Songjaroen T; Dungchai W; Henry CS; Chailapakul O; Laiwattanapaisal W Anal Chim Acta; 2013 Jul; 788():39-45. PubMed ID: 23845479 [TBL] [Abstract][Full Text] [Related]
20. Additively Manufactured Digital Microfluidic Platforms for Ion-Selective Sensing. Min X; Bao C; Kim WS ACS Sens; 2019 Apr; 4(4):918-923. PubMed ID: 30855128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]