BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 22842779)

  • 1. ROS homeostasis during development: an evolutionary conserved strategy.
    Schippers JH; Nguyen HM; Lu D; Schmidt R; Mueller-Roeber B
    Cell Mol Life Sci; 2012 Oct; 69(19):3245-57. PubMed ID: 22842779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription.
    Sevilla F; Martí MC; De Brasi-Velasco S; Jiménez A
    J Exp Bot; 2023 Oct; 74(19):5955-5969. PubMed ID: 37453076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of reactive oxygen species metabolism.
    Inupakutika MA; Sengupta S; Devireddy AR; Azad RK; Mittler R
    J Exp Bot; 2016 Nov; 67(21):5933-5943. PubMed ID: 27742750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PFT1, a transcriptional Mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis.
    Sundaravelpandian K; Chandrika NNP; Schmidt W
    New Phytol; 2013 Jan; 197(1):151-161. PubMed ID: 23106228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase-derived reactive oxygen species: Dosis facit venenum.
    Schröder K
    Exp Physiol; 2019 Apr; 104(4):447-452. PubMed ID: 30737851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidases in bone homeostasis and osteoporosis.
    Schröder K
    Free Radic Biol Med; 2019 Feb; 132():67-72. PubMed ID: 30189265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD.
    Liu Y; He C
    Plant Cell Rep; 2016 May; 35(5):995-1007. PubMed ID: 26883222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root.
    Tsukagoshi H; Busch W; Benfey PN
    Cell; 2010 Nov; 143(4):606-16. PubMed ID: 21074051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROS-mediated redox signaling during cell differentiation in plants.
    Schmidt R; Schippers JH
    Biochim Biophys Acta; 2015 Aug; 1850(8):1497-508. PubMed ID: 25542301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidases in the differentiation of endothelial cells.
    Hahner F; Moll F; Schröder K
    Cardiovasc Res; 2020 Feb; 116(2):262-268. PubMed ID: 31393561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites To Modulate Plant Development and Stress Responses.
    Chapman JM; Muhlemann JK; Gayomba SR; Muday GK
    Chem Res Toxicol; 2019 Mar; 32(3):370-396. PubMed ID: 30781949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans.
    Lara-Ortíz T; Riveros-Rosas H; Aguirre J
    Mol Microbiol; 2003 Nov; 50(4):1241-55. PubMed ID: 14622412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PFT1-controlled ROS balance is critical for multiple stages of root hair development in Arabidopsis.
    Sundaravelpandian K; Chandrika N; Tsai YH; Schmidt W
    Plant Signal Behav; 2013 May; 8(5):e24066. PubMed ID: 23455023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH oxidases and ROS signaling in the gastrointestinal tract.
    Aviello G; Knaus UG
    Mucosal Immunol; 2018 Jul; 11(4):1011-1023. PubMed ID: 29743611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Reactive oxygen species and stress signaling in plants].
    Kolupaev IuE; Karpets IuV
    Ukr Biochem J; 2014; 86(4):18-35. PubMed ID: 25509181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuels for ROS signaling in plant immunity.
    Wu B; Qi F; Liang Y
    Trends Plant Sci; 2023 Oct; 28(10):1124-1131. PubMed ID: 37188557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidases in bone homeostasis and osteoporosis.
    Schröder K
    Cell Mol Life Sci; 2015 Jan; 72(1):25-38. PubMed ID: 25167924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species as intracellular messengers during cell growth and differentiation.
    Sauer H; Wartenberg M; Hescheler J
    Cell Physiol Biochem; 2001; 11(4):173-86. PubMed ID: 11509825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRK2 and C-terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidopsis.
    Kimura S; Hunter K; Vaahtera L; Tran HC; Citterico M; Vaattovaara A; Rokka A; Stolze SC; Harzen A; Meißner L; Wilkens MMT; Hamann T; Toyota M; Nakagami H; Wrzaczek M
    Plant Cell; 2020 Apr; 32(4):1063-1080. PubMed ID: 32034035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis.
    Rudolf J; Raad H; Taieb A; Rezvani HR
    Antioxid Redox Signal; 2018 May; 28(13):1238-1261. PubMed ID: 28990413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.