BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22843161)

  • 1. The systematic study of the electroporation and electrofusion of B16-F1 and CHO cells in isotonic and hypotonic buffer.
    Usaj M; Kanduser M
    J Membr Biol; 2012 Sep; 245(9):583-90. PubMed ID: 22843161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16-F1) and Chinese Hamster ovary (CHO) cells.
    Usaj M; Trontelj K; Miklavcic D; Kanduser M
    J Membr Biol; 2010 Jul; 236(1):107-16. PubMed ID: 20628737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Lipid Antioxidant α-Tocopherol on Cell Viability and Electrofusion Yield of B16-F1 Cells In Vitro.
    Kanduser M; Kokalj Imsirovic M; Usaj M
    J Membr Biol; 2019 Feb; 252(1):105-114. PubMed ID: 30671620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell electrofusion using nanosecond electric pulses.
    Rems L; Ušaj M; Kandušer M; Reberšek M; Miklavčič D; Pucihar G
    Sci Rep; 2013 Nov; 3():3382. PubMed ID: 24287643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrofusion of B16-F1 and CHO cells: the comparison of the pulse first and contact first protocols.
    Usaj M; Flisar K; Miklavcic D; Kanduser M
    Bioelectrochemistry; 2013 Feb; 89():34-41. PubMed ID: 23032299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified Adherence Method (MAM) for Electrofusion of Anchorage-Dependent Cells.
    Ušaj M; Kandušer M
    Methods Mol Biol; 2015; 1313():203-16. PubMed ID: 25947667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extent of cell electrofusion in vitro and in vivo is cell line dependent.
    Salomskaite-Davalgiene S; Cepurniene K; Satkauskas S; Venslauskas MS; Mir LM
    Anticancer Res; 2009 Aug; 29(8):3125-30. PubMed ID: 19661325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions.
    Schmitt JJ; Zimmermann U
    Biochim Biophys Acta; 1989 Jul; 983(1):42-50. PubMed ID: 2758049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines.
    Kandušer M; Ušaj M
    Expert Opin Drug Deliv; 2014 Dec; 11(12):1885-98. PubMed ID: 25010248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of bulk cell electrofusion in vitro for production of human-mouse heterohybridoma cells.
    Trontelj K; Rebersek M; Kanduser M; Serbec VC; Sprohar M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):124-9. PubMed ID: 18667367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion.
    Hamdi FS; Français O; Dufour-Gergam E; Le Pioufle B
    Bioelectrochemistry; 2014 Dec; 100():27-35. PubMed ID: 25012938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells.
    Rols MP; Teissie J
    Eur J Biochem; 1989 Jan; 179(1):109-15. PubMed ID: 2645133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell electrofusion visualized with fluorescence microscopy.
    Trontelj K; Usaj M; Miklavcic D
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity.
    Wang HY; Lu C
    Biotechnol Bioeng; 2006 Dec; 95(6):1116-25. PubMed ID: 16817188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation.
    Li LH; Hensen ML; Zhao YL; Hui SW
    Biophys J; 1996 Jul; 71(1):479-86. PubMed ID: 8804630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.
    Dermol J; Miklavčič D
    Bioelectrochemistry; 2014 Dec; 100():52-61. PubMed ID: 24731594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probability and kinetics of rupture and electrofusion in giant unilamellar vesicles under various frequencies of direct current pulses.
    Bhuiyan MTI; Karal MAS; Orchi US; Ahmed N; Moniruzzaman M; Ahamed MK; Billah MM
    PLoS One; 2024; 19(6):e0304345. PubMed ID: 38857287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion.
    Sukhorukov VL; Reuss R; Endter JM; Fehrmann S; Katsen-Globa A; Gessner P; Steinbach A; Müller KJ; Karpas A; Zimmermann U; Zimmermann H
    Biochem Biophys Res Commun; 2006 Aug; 346(3):829-39. PubMed ID: 16780801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How external osmolarity affects the activity of the contractile vacuole complex, the cytosolic osmolarity and the water permeability of the plasma membrane in Paramecium multimicronucleatum.
    Stock C; Allen RD; Naitoh Y
    J Exp Biol; 2001 Jan; 204(Pt 2):291-304. PubMed ID: 11136615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo cell electrofusion.
    Mekid H; Mir LM
    Biochim Biophys Acta; 2000 Dec; 1524(2-3):118-30. PubMed ID: 11113558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.