These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22843193)

  • 1. Biomedical signal acquisition with streaming wireless communication for recording evoked potentials.
    Thie J; Klistorner A; Graham SL
    Doc Ophthalmol; 2012 Oct; 125(2):149-59. PubMed ID: 22843193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synchronization method for wireless acquisition systems, application to brain computer interfaces.
    Foerster M; Bonnet S; van Langhenhove A; Porcherot J; Charvet G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():830-3. PubMed ID: 24109816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time artifact filtering in continuous VEPs/fMRI recording.
    Anwar MN; Bonzano L; Sebastiano DR; Roccatagliata L; Gualniera G; Vitali P; Ogliastro C; Spadavecchia L; Rodriguez G; Sanguineti V; Morasso P; Bandini F
    J Neurosci Methods; 2009 Nov; 184(2):213-23. PubMed ID: 19682492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless multichannel biopotential recording using an integrated FM telemetry circuit.
    Mohseni P; Najafi K; Eliades SJ; Wang X
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):263-71. PubMed ID: 16200750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic interference in intraoperative monitoring of motor evoked potentials and a wireless solution.
    Farajidavar A; Seifert JL; Delgado MR; Sparagana S; Romero-Ortega MI; Chiao JC
    Med Eng Phys; 2016 Feb; 38(2):87-96. PubMed ID: 26678325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.
    Ellingson RM; Oken B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6829-32. PubMed ID: 21095851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-channel low-power system-on-chip for single-unit recording and narrowband wireless transmission of neural signal.
    Bonfanti A; Ceravolo M; Zambra G; Gusmeroli R; Spinelli AS; Lacaita AL; Angotzi GN; Baranauskas G; Fadiga L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1555-60. PubMed ID: 21096380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wireless multichannel EEG recording platform.
    Filipe S; Charvet G; Foerster M; Porcherot J; Bêche JF; Bonnet S; Audebert P; Régis G; Zongo B; Robinet S; Condemine C; Mestais C; Guillemaud R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6319-22. PubMed ID: 22255783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless gigabit data telemetry for large-scale neural recording.
    Kuan YC; Lo YK; Kim Y; Chang MC; Liu W
    IEEE J Biomed Health Inform; 2015 May; 19(3):949-57. PubMed ID: 25823050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency domain analyses of neonatal flash VEP.
    Isler JR; Grose-Fifer J; Fifer WP; Housman S; Stark RI; Grieve PG
    Pediatr Res; 2007 Nov; 62(5):581-5. PubMed ID: 17805204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compact electroencephalogram recording device with integrated audio stimulation system.
    Paukkunen AK; Kurttio AA; Leminen MM; Sepponen RE
    Rev Sci Instrum; 2010 Jun; 81(6):064301. PubMed ID: 20590254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-invasive and non-invasive recording of visual evoked potentials in mice.
    Marenna S; Castoldi V; d'Isa R; Marco C; Comi G; Leocani L
    Doc Ophthalmol; 2019 Jun; 138(3):169-179. PubMed ID: 30840173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
    Sawan M; Salam MT; Le Lan J; Kassab A; Gelinas S; Vannasing P; Lesage F; Lassonde M; Nguyen DK
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):186-95. PubMed ID: 23853301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeatability of short-duration transient visual evoked potentials in normal subjects.
    Tello C; De Moraes CG; Prata TS; Derr P; Patel J; Siegfried J; Liebmann JM; Ritch R
    Doc Ophthalmol; 2010 Jun; 120(3):219-28. PubMed ID: 20111979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual evoked potentials can be reliably recorded using noninvasive epidermal electrodes in the anesthetized rat.
    Santangelo R; Castoldi V; D'Isa R; Marenna S; Huang SC; Cursi M; Comi G; Leocani L
    Doc Ophthalmol; 2018 Jun; 136(3):165-175. PubMed ID: 29623523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field encephalography for brain activity monitoring.
    Versek C; Frasca T; Zhou J; Chowdhury K; Sridhar S
    J Neural Eng; 2018 Aug; 15(4):046027. PubMed ID: 29749347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.
    Fazel-Rezai R; Pauls M; Slawinski D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5712-5. PubMed ID: 18003309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wireless transmission neural interface system for unconstrained non-human primates.
    Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V
    J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-noise receiver for multichannel wireless neural recording.
    Yin M; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2024-7. PubMed ID: 19163091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
    Reyes I; Nazeran H; Franco M; Haltiwanger E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.