BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22843340)

  • 1. A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems.
    Begum S; Nakaba S; Yamagishi Y; Yamane K; Islam MA; Oribe Y; Ko JH; Jin HO; Funada R
    Ann Bot; 2012 Sep; 110(4):875-85. PubMed ID: 22843340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers.
    Begum S; Kudo K; Matsuoka Y; Nakaba S; Yamagishi Y; Nabeshima E; Rahman MH; Nugroho WD; Oribe Y; Jin HO; Funada R
    Ann Bot; 2016 Mar; 117(3):465-77. PubMed ID: 26703452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the localization and levels of starch and lipids in cambium and phloem during cambial reactivation by artificial heating of main stems of Cryptomeria japonica trees.
    Begum S; Nakaba S; Oribe Y; Kubo T; Funada R
    Ann Bot; 2010 Dec; 106(6):885-95. PubMed ID: 21037242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold stability of microtubules in wood-forming tissues of conifers during seasons of active and dormant cambium.
    Begum S; Shibagaki M; Furusawa O; Nakaba S; Yamagishi Y; Yoshimoto J; Jin HO; Sano Y; Funada R
    Planta; 2012 Jan; 235(1):165-79. PubMed ID: 21861112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata).
    Begum S; Nakaba S; Oribe Y; Kubo T; Funada R
    Ann Bot; 2007 Sep; 100(3):439-47. PubMed ID: 17621596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings.
    Giovannelli A; Mattana S; Emiliani G; Anichini M; Traversi ML; Pavone FS; Cicchi R
    Tree Physiol; 2022 Jun; 42(6):1149-1163. PubMed ID: 34918169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica.
    Kitin P; Fujii T; Abe H; Takata K
    Ann Bot; 2009 May; 103(7):1145-57. PubMed ID: 19258338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies).
    Gricar J; Zupancic M; Cufar K; Koch G; Schmitt U; Oven P
    Ann Bot; 2006 Jun; 97(6):943-51. PubMed ID: 16613904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of terminal latewood tracheids in silver fir trees during autumn.
    Gricar J; Cufar K; Oven P; Schmitt U
    Ann Bot; 2005 May; 95(6):959-65. PubMed ID: 15760912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal water deficit and wood formation in Cryptomeria japonica.
    Abe H; Nakai T; Utsumi Y; Kagawa A
    Tree Physiol; 2003 Aug; 23(12):859-63. PubMed ID: 12865252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana.
    Thibeault-Martel M; Krause C; Morin H; Rossi S
    Ann Bot; 2008 Nov; 102(5):667-74. PubMed ID: 18708643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast.
    Dié A; Kitin P; Kouamé FN; Van den Bulcke J; Van Acker J; Beeckman H
    Ann Bot; 2012 Sep; 110(4):861-73. PubMed ID: 22805529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem.
    Anfodillo T; Deslauriers A; Menardi R; Tedoldi L; Petit G; Rossi S
    J Exp Bot; 2012 Jan; 63(2):837-45. PubMed ID: 22016427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees.
    Begum S; Nakaba S; Yamagishi Y; Oribe Y; Funada R
    Physiol Plant; 2013 Jan; 147(1):46-54. PubMed ID: 22680337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal and clonal variation in cellulose microfibril orientation during cell wall formation of tracheids in Cryptomeria japonica.
    Jyske T; Fujiwara T; Kuroda K; Iki T; Zhang C; Jyske TK; Abe H
    Tree Physiol; 2014 Aug; 34(8):856-68. PubMed ID: 24633653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes.
    Cocozza C; Palombo C; Tognetti R; La Porta N; Anichini M; Giovannelli A; Emiliani G
    Tree Physiol; 2016 Jul; 36(7):832-46. PubMed ID: 26941291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies.
    Castagneri D; Fonti P; von Arx G; Carrer M
    Ann Bot; 2017 Apr; 119(6):1011-1020. PubMed ID: 28130220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nutrient optimization on intra-annual wood formation in Norway spruce.
    Kalliokoski T; Mäkinen H; Jyske T; Nöjd P; Linder S
    Tree Physiol; 2013 Nov; 33(11):1145-55. PubMed ID: 24169103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of throughfall exclusion on xylogenesis of balsam fir.
    D'Orangeville L; Côté B; Houle D; Morin H
    Tree Physiol; 2013 May; 33(5):516-26. PubMed ID: 23604743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal and perennial changes in the distribution of water in the sapwood of conifers in a sub-frigid zone.
    Utsumi Y; Sano Y; Funada R; Ohtani J; Fujikawa S
    Plant Physiol; 2003 Apr; 131(4):1826-33. PubMed ID: 12692342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.