These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22843400)

  • 1. Reducing the effect of variable starch levels in biomass recalcitrance screening.
    Decker SR; Carlile M; Selig MJ; Doeppke C; Davis M; Sykes R; Turner G; Ziebell A
    Methods Mol Biol; 2012; 908():181-95. PubMed ID: 22843400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy.
    Sykes R; Yung M; Novaes E; Kirst M; Peter G; Davis M
    Methods Mol Biol; 2009; 581():169-83. PubMed ID: 19768623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.
    Li H; Gao X; Demartini JD; Kumar R; Wyman CE
    Biotechnol Bioeng; 2013 Nov; 110(11):2894-901. PubMed ID: 23637060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid.
    Gao X; Kumar R; DeMartini JD; Li H; Wyman CE
    Biotechnol Bioeng; 2013 Mar; 110(3):754-62. PubMed ID: 23055338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-scale and automatable high-throughput compositional analysis of biomass.
    DeMartini JD; Studer MH; Wyman CE
    Biotechnol Bioeng; 2011 Feb; 108(2):306-12. PubMed ID: 20830680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release.
    Studer MH; DeMartini JD; Brethauer S; McKenzie HL; Wyman CE
    Biotechnol Bioeng; 2010 Feb; 105(2):231-8. PubMed ID: 19731251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron beam pretreatment of switchgrass to enhance enzymatic hydrolysis to produce sugars for biofuels.
    Sundar S; Bergey NS; Salamanca-Cardona L; Stipanovic A; Driscoll M
    Carbohydr Polym; 2014 Jan; 100():195-201. PubMed ID: 24188854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Apr; 109(4):894-903. PubMed ID: 22094883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
    Himmel ME; Ding SY; Johnson DK; Adney WS; Nimlos MR; Brady JW; Foust TD
    Science; 2007 Feb; 315(5813):804-7. PubMed ID: 17289988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of the heteroxylans from poplar and switchgrass.
    Mazumder K; Peña MJ; O'Neill MA; York WS
    Methods Mol Biol; 2012; 908():215-28. PubMed ID: 22843402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An In-Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock.
    Meng X; Pu Y; Yoo CG; Li M; Bali G; Park DY; Gjersing E; Davis MF; Muchero W; Tuskan GA; Tschaplinski TJ; Ragauskas AJ
    ChemSusChem; 2017 Jan; 10(1):139-150. PubMed ID: 27882723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.
    Zhu JY; Pan XJ
    Bioresour Technol; 2010 Jul; 101(13):4992-5002. PubMed ID: 19969450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass-water interactions correlate to recalcitrance and are intensified by pretreatment: An investigation of water constraint and retention in pretreated spruce using low field NMR and water retention value techniques.
    Weiss ND; Thygesen LG; Felby C; Roslander C; Gourlay K
    Biotechnol Prog; 2017 Jan; 33(1):146-153. PubMed ID: 27802565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids.
    Zhao H; Baker GA; Cowins JV
    Biotechnol Prog; 2010; 26(1):127-33. PubMed ID: 19918908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass.
    Perez-Pimienta JA; Lopez-Ortega MG; Varanasi P; Stavila V; Cheng G; Singh S; Simmons BA
    Bioresour Technol; 2013 Jan; 127():18-24. PubMed ID: 23131619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1).
    Zeng M; Ximenes E; Ladisch MR; Mosier NS; Vermerris W; Huang CP; Sherman DM
    Biotechnol Bioeng; 2012 Feb; 109(2):390-7. PubMed ID: 21928336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of transgenic glycoside hydrolases expressed in plants: T. reesei CBH I and A. cellulolyticus EI.
    Brunecky R; Baker JO; Wei H; Taylor LE; Himmel ME; Decker SR
    Methods Mol Biol; 2012; 908():197-211. PubMed ID: 22843401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in modifying lignin for enhanced biofuel production.
    Simmons BA; Loqué D; Ralph J
    Curr Opin Plant Biol; 2010 Jun; 13(3):313-20. PubMed ID: 20359939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.
    Wang Y; Fan C; Hu H; Li Y; Sun D; Wang Y; Peng L
    Biotechnol Adv; 2016; 34(5):997-1017. PubMed ID: 27269671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.
    Trumbo JL; Zhang B; Stewart CN
    Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.