BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2284352)

  • 1. Ultraviolet resonance Raman spectroscopy of bacteriorhodopsin.
    Netto MM; Fodor SP; Mathies RA
    Photochem Photobiol; 1990 Sep; 52(3):605-7. PubMed ID: 2284352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved ultraviolet resonance Raman studies of protein structure: application to bacteriorhodopsin.
    Ames JB; Ros M; Raap J; Lugtenburg J; Mathies RA
    Biochemistry; 1992 Jun; 31(23):5328-34. PubMed ID: 1606157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal.
    Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y
    J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.
    Weidlich O; Ujj L; Jäger F; Atkinson GH
    Biophys J; 1997 May; 72(5):2329-41. PubMed ID: 9129836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Dynamics Preceding Photoisomerization of the Retinal Chromophore in Bacteriorhodopsin Revealed by Deep-UV Femtosecond Stimulated Raman Spectroscopy.
    Tahara S; Kuramochi H; Takeuchi S; Tahara T
    J Phys Chem Lett; 2019 Sep; 10(18):5422-5427. PubMed ID: 31469573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in hydrogen bonding and environment of tryptophan residues on helix F of bacteriorhodopsin during the photocycle: a time-resolved ultraviolet resonance Raman study.
    Hashimoto S; Sasaki M; Takeuchi H; Needleman R; Lanyi JK
    Biochemistry; 2002 May; 41(20):6495-503. PubMed ID: 12009913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-correlated photon scattering during the photocycle of bacteriorhodopsin.
    Czégé J; Reinisch L
    Biophys J; 1990 Sep; 58(3):721-9. PubMed ID: 2207260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet resonance Raman spectra of insulin and alpha-lactalbumin with 218- and 200-nm laser excitation.
    Rava RP; Spiro TG
    Biochemistry; 1985 Apr; 24(8):1861-5. PubMed ID: 3893540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic resonance Raman spectroscopy: dynamics of deprotonation of the Schiff base of bacteriorhodopsin.
    Marcus MA; Lewis A
    Science; 1977 Mar; 195(4284):1328-30. PubMed ID: 841330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved resonance Raman spectroscopy of bacteriorhodopsin on the millisecond timescale.
    Terner J; Campion A; El-Sayed MA
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5212-6. PubMed ID: 271946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman spectra of bacteriorhodopsin mutants with substitutions at Asp-85, Asp-96, and Arg-82.
    Lin SW; Fodor SP; Miercke LJ; Shand RF; Betlach MC; Stroud RM; Mathies RA
    Photochem Photobiol; 1991 Mar; 53(3):341-6. PubMed ID: 2062880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet resonance Raman spectra of Trp-182 and Trp-189 in bacteriorhodopsin: novel information on the structure of Trp-182 and its steric interaction with retinal.
    Hashimoto S; Obata K; Takeuchi H; Needleman R; Lanyi JK
    Biochemistry; 1997 Sep; 36(39):11583-90. PubMed ID: 9305948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of femtosecond stimulated Raman spectroscopy of excited-state evolution in bacteriorhodopsin.
    Niu K; Zhao B; Sun Z; Lee SY
    J Chem Phys; 2010 Feb; 132(8):084510. PubMed ID: 20192310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate.
    Mei G; Mamaeva N; Ganapathy S; Wang P; DeGrip WJ; Rothschild KJ
    PLoS One; 2018; 13(12):e0209506. PubMed ID: 30586409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Investigation of the effects of dehydration on bacterial rhodopsin by laser resonance Raman spectroscopy].
    Terpugov EL; Chekulaeva LN; Lazarev IuA
    Mol Biol (Mosk); 1982; 16(4):814-20. PubMed ID: 7121464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman kinetic spectroscopy of bacteriorhodopsin on the microsecond time scale.
    Campion A; El-Sayed MA; Terner J
    Biophys J; 1977 Dec; 20(3):369-75. PubMed ID: 922125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocycle of dried acid purple form of bacteriorhodopsin.
    Groma GI; Kelemen L; Kulcsár A; Lakatos M; Váró G
    Biophys J; 2001 Dec; 81(6):3432-41. PubMed ID: 11721005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable kHz deep ultraviolet (193-210 nm) laser for Raman application.
    Balakrishnan G; Hu Y; Nielsen SB; Spiro TG
    Appl Spectrosc; 2005 Jun; 59(6):776-81. PubMed ID: 16053544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct.
    Rath P; Krebs MP; He Y; Khorana HG; Rothschild KJ
    Biochemistry; 1993 Mar; 32(9):2272-81. PubMed ID: 8443170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A detailed resonance Raman study of the M412 intermediate in the bacteriorhodopsin photocycle.
    Deng H; Pande C; Callender RH; Ebrey TG
    Photochem Photobiol; 1985 Apr; 41(4):467-70. PubMed ID: 4011703
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.