BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22843538)

  • 1. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland.
    Lin X; Green S; Tfaily MM; Prakash O; Konstantinidis KT; Corbett JE; Chanton JP; Cooper WT; Kostka JE
    Appl Environ Microbiol; 2012 Oct; 78(19):7023-31. PubMed ID: 22843538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA.
    Lin X; Tfaily MM; Steinweg JM; Chanton P; Esson K; Yang ZK; Chanton JP; Cooper W; Schadt CW; Kostka JE
    Appl Environ Microbiol; 2014 Jun; 80(11):3518-30. PubMed ID: 24682300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation Reduces Microbial Richness and Alters Microbial Functions in an Australian Peatland.
    Birnbaum C; Wood J; Lilleskov E; Lamit LJ; Shannon J; Brewer M; Grover S
    Microb Ecol; 2023 Apr; 85(3):875-891. PubMed ID: 35867139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types.
    Urbanová Z; Bárta J
    FEMS Microbiol Ecol; 2014 Dec; 90(3):633-46. PubMed ID: 25195805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecophysiological mechanisms characterising fen and bog species: focus on variations in nitrogen uptake traits under different soil-water pH.
    Nakamura T; Nakamura M
    Oecologia; 2012 Apr; 168(4):913-21. PubMed ID: 22009342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition.
    Yang Q; Liu Z; Bai E
    Glob Chang Biol; 2023 Nov; 29(22):6350-6366. PubMed ID: 37602716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Genetic Potential for Proteolytic Decomposition in Northern Peatland Ecosystems.
    Graham EB; Yang F; Bell S; Hofmockel KS
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30850433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota.
    Hill BH; Jicha TM; Lehto LLP; Elonen CM; Sebestyen SD; Kolka RK
    Sci Total Environ; 2016 Apr; 550():880-892. PubMed ID: 26851760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and Phytocoenological Characteristics of Two Different Slovak Peatlands.
    Fazekašová D; Barančíková G; Fazekaš J; Štofejová L; Halas J; Litavec T; Liptaj T
    Plants (Basel); 2021 Jun; 10(7):. PubMed ID: 34202908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in peatland porewater chemistry over time and space along a bog to fen gradient.
    Griffiths NA; Sebestyen SD; Oleheiser KC
    Sci Total Environ; 2019 Dec; 697():134152. PubMed ID: 31487589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of Viral Abundance and Diversity in a Sphagnum-Dominated Peatland: Temporal Fluctuations Prevail Over Habitat.
    Ballaud F; Dufresne A; Francez AJ; Colombet J; Sime-Ngando T; Quaiser A
    Front Microbiol; 2015; 6():1494. PubMed ID: 26779149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland.
    Wilson RM; Hough MA; Verbeke BA; Hodgkins SB; ; Chanton JP; Saleska SD; Rich VI; Tfaily MM
    Sci Total Environ; 2022 May; 820():152757. PubMed ID: 35031367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.
    Ulanowski TA; Branfireun BA
    Sci Total Environ; 2013 Jun; 454-455():211-8. PubMed ID: 23542673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial communities show parallels at sites with distinct litter and soil characteristics.
    Sagova-Mareckova M; Omelka M; Cermak L; Kamenik Z; Olsovska J; Hackl E; Kopecky J; Hadacek F
    Appl Environ Microbiol; 2011 Nov; 77(21):7560-7. PubMed ID: 21926225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient.
    Jassey VE; Chiapusio G; Mitchell EA; Binet P; Toussaint ML; Gilbert D
    Microb Ecol; 2011 Feb; 61(2):374-85. PubMed ID: 20938656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship Between Peat Type and Microbial Ecology in Sphagnum-Containing Peatlands of the Adirondack Mountains, NY, USA.
    St James AR; Lin J; Richardson RE
    Microb Ecol; 2021 Aug; 82(2):429-441. PubMed ID: 33410936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification.
    Soudzilovskaia NA; Cornelissen JH; During HJ; van Logtestijn RS; Lang SI; Aerts R
    Ecology; 2010 Sep; 91(9):2716-26. PubMed ID: 20957965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of soil properties and hydrology on archaeal community composition in three temperate grasslands on peat.
    Görres CM; Conrad R; Petersen SO
    FEMS Microbiol Ecol; 2013 Aug; 85(2):227-40. PubMed ID: 23521431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP.
    Gupta V; Smemo KA; Yavitt JB; Basiliko N
    Microb Ecol; 2012 Feb; 63(2):438-45. PubMed ID: 21728037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge.
    Steinberg LM; Regan JM
    Appl Environ Microbiol; 2008 Nov; 74(21):6663-71. PubMed ID: 18776026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.