BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 22843991)

  • 1. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation.
    Lan P; Li W; Schmidt W
    Mol Cell Proteomics; 2012 Nov; 11(11):1156-66. PubMed ID: 22843991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots.
    Li W; Lan P
    BMC Res Notes; 2015 Oct; 8():555. PubMed ID: 26459023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of Arabidopsis thaliana ecotypes with contrasted root architecture in response to phosphate deficiency.
    Chevalier F; Rossignol M
    J Plant Physiol; 2011 Nov; 168(16):1885-90. PubMed ID: 21835495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots.
    Rodríguez-Celma J; Tsai YH; Wen TN; Wu YC; Curie C; Schmidt W
    Sci Rep; 2016 Nov; 6():35846. PubMed ID: 27804982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative expression profiling reveals a role of the root apoplast in local phosphate response.
    Hoehenwarter W; Mönchgesang S; Neumann S; Majovsky P; Abel S; Müller J
    BMC Plant Biol; 2016 Apr; 16():106. PubMed ID: 27121119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency.
    Wang ZQ; Zhou X; Dong L; Guo J; Chen Y; Zhang Y; Wu L; Xu M
    J Proteomics; 2018 Jul; 184():39-53. PubMed ID: 29920325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis.
    Rouached H; Secco D; Arpat B; Poirier Y
    BMC Plant Biol; 2011 Jan; 11():19. PubMed ID: 21261953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The paralogous R3 MYB proteins CAPRICE, TRIPTYCHON and ENHANCER OF TRY AND CPC1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots.
    Chen CY; Schmidt W
    J Exp Bot; 2015 Aug; 66(15):4821-34. PubMed ID: 26022254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.
    Hsieh LC; Lin SI; Shih AC; Chen JW; Lin WY; Tseng CY; Li WH; Chiou TJ
    Plant Physiol; 2009 Dec; 151(4):2120-32. PubMed ID: 19854858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Transcriptome and Proteome Analysis of Maize (
    Nie Z; Luo B; Zhang X; Wu L; Liu D; Guo J; He X; Gao D; Gao S; Gao S
    Curr Issues Mol Biol; 2021 Sep; 43(2):1142-1155. PubMed ID: 34563050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiency-induced root hair remodeling in Arabidopsis.
    Lan P; Li W; Schmidt W
    BMC Genomics; 2013 Apr; 14():210. PubMed ID: 23547783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis.
    Lan P; Li W; Wen TN; Shiau JY; Wu YC; Lin W; Schmidt W
    Plant Physiol; 2011 Feb; 155(2):821-34. PubMed ID: 21173025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Phosphate Deficiency-Induced Metabolic Changes by Iron Availability in
    Chutia R; Scharfenberg S; Neumann S; Abel S; Ziegler J
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression changes of ribosomal proteins in phosphate- and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition.
    Wang J; Lan P; Gao H; Zheng L; Li W; Schmidt W
    BMC Genomics; 2013 Nov; 14():783. PubMed ID: 24225185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Analysis of Protein Abundance, Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize.
    Jia H; Sun W; Li M; Zhang Z
    J Proteome Res; 2018 Feb; 17(2):822-833. PubMed ID: 29250956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level.
    Kuo HF; Chang TY; Chiang SF; Wang WD; Charng YY; Chiou TJ
    Plant J; 2014 Nov; 80(3):503-15. PubMed ID: 25155524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription Factor WRKY33 Mediates the Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in
    Shen N; Hou S; Tu G; Lan W; Jing Y
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation.
    Zhang Y; Wang X; Lu S; Liu D
    J Exp Bot; 2014 Dec; 65(22):6577-88. PubMed ID: 25246445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis MYB-Related HHO2 Exerts a Regulatory Influence on a Subset of Root Traits and Genes Governing Phosphate Homeostasis.
    Nagarajan VK; Satheesh V; Poling MD; Raghothama KG; Jain A
    Plant Cell Physiol; 2016 Jun; 57(6):1142-52. PubMed ID: 27016098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis.
    Wang L; ZengJ HQ; Song J; Feng SJ; Yang ZM
    Plant Sci; 2015 Sep; 238():273-85. PubMed ID: 26259194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.