These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22844092)

  • 1. Sequence signatures of direct complementarity between mRNAs and cognate proteins on multiple levels.
    Hlevnjak M; Polyansky AA; Zagrovic B
    Nucleic Acids Res; 2012 Oct; 40(18):8874-82. PubMed ID: 22844092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code.
    Polyansky AA; Hlevnjak M; Zagrovic B
    RNA Biol; 2013 Aug; 10(8):1248-54. PubMed ID: 23945356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of direct complementary interactions between messenger RNAs and their cognate proteins.
    Polyansky AA; Zagrovic B
    Nucleic Acids Res; 2013 Oct; 41(18):8434-43. PubMed ID: 23868089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of amino acids and their sidechain analogs in crowded solutions of RNA nucleobases with implications for the mRNA-protein complementarity hypothesis.
    Hajnic M; Osorio JI; Zagrovic B
    Nucleic Acids Res; 2014 Dec; 42(21):12984-94. PubMed ID: 25361976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malleable nature of mRNA-protein compositional complementarity and its functional significance.
    Hlevnjak M; Zagrovic B
    Nucleic Acids Res; 2015 Mar; 43(6):3012-21. PubMed ID: 25753660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Contribution of Protein Spatial Organization to the Physicochemical Interconnection between Proteins and Their Cognate mRNAs.
    Beier A; Zagrovic B; Polyansky AA
    Life (Basel); 2014 Nov; 4(4):788-99. PubMed ID: 25423140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction preferences between nucleobase mimetics and amino acids in aqueous solutions.
    Hajnic M; Osorio JI; Zagrovic B
    Phys Chem Chem Phys; 2015 Sep; 17(33):21414-22. PubMed ID: 26219945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mRNA/protein sequence complementarity and its determinants: The impact of affinity scales.
    Bartonek L; Zagrovic B
    PLoS Comput Biol; 2017 Jul; 13(7):e1005648. PubMed ID: 28750009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute binding-free energies between standard RNA/DNA nucleobases and amino-acid sidechain analogs in different environments.
    de Ruiter A; Zagrovic B
    Nucleic Acids Res; 2015 Jan; 43(2):708-18. PubMed ID: 25550435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-amino acid binding: a stereochemical era for the genetic code.
    Yarus M; Widmann JJ; Knight R
    J Mol Evol; 2009 Nov; 69(5):406-29. PubMed ID: 19795157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analogue encoding of physicochemical properties of proteins in their cognate messenger RNAs.
    Polyansky AA; Hlevnjak M; Zagrovic B
    Nat Commun; 2013; 4():2784. PubMed ID: 24253588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On origin of genetic code and tRNA before translation.
    Rodin AS; Szathmáry E; Rodin SN
    Biol Direct; 2011 Feb; 6():14. PubMed ID: 21342520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-ligand chemistry: a testable source for the genetic code.
    Yarus M
    RNA; 2000 Apr; 6(4):475-84. PubMed ID: 10786839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Looking for organization patterns of highly expressed genes: purine-pyrimidine composition of precursor mRNAs.
    Paz A; Mester D; Nevo E; Korol A
    J Mol Evol; 2007 Feb; 64(2):248-60. PubMed ID: 17211550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two perspectives on the origin of the standard genetic code.
    Sengupta S; Aggarwal N; Bandhu AV
    Orig Life Evol Biosph; 2014 Dec; 44(4):287-91. PubMed ID: 25585805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding the right RNA: identification of cellular mRNA substrates for RNA-binding proteins.
    Trifillis P; Day N; Kiledjian M
    RNA; 1999 Aug; 5(8):1071-82. PubMed ID: 10445881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions.
    Seligmann H; Demongeot J
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31948054
    [No Abstract]   [Full Text] [Related]  

  • 18. Genetic coding algorithm for sense and antisense peptide interactions.
    Štambuk N; Konjevoda P; Turčić P; Kövér K; Kujundžić RN; Manojlović Z; Gabričević M
    Biosystems; 2018 Feb; 164():199-216. PubMed ID: 29107641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of highly conserved pyrimidine-rich sequences in the 3' untranslated region of the GAP-43 mRNA in mRNA stability and RNA-protein interactions.
    Kohn DT; Tsai KC; Cansino VV; Neve RL; Perrone-Bizzozero NI
    Brain Res Mol Brain Res; 1996 Mar; 36(2):240-50. PubMed ID: 8965644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificities of Caenorhabditis elegans and human hairpin binding proteins for the first nucleotide in the histone mRNA hairpin loop.
    Michel F; Schümperli D; Müller B
    RNA; 2000 Nov; 6(11):1539-50. PubMed ID: 11105754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.