BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 22844505)

  • 1. Bitter taste stimuli induce differential neural codes in mouse brain.
    Wilson DM; Boughter JD; Lemon CH
    PLoS One; 2012; 7(7):e41597. PubMed ID: 22844505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli.
    Geran LC; Travers SP
    J Neurophysiol; 2006 Nov; 96(5):2513-27. PubMed ID: 16899635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural representation of bitter taste in the nucleus of the solitary tract.
    Lemon CH; Smith DV
    J Neurophysiol; 2005 Dec; 94(6):3719-29. PubMed ID: 16107527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse Parabrachial Neurons Signal a Relationship between Bitter Taste and Nociceptive Stimuli.
    Li J; Lemon CH
    J Neurosci; 2019 Feb; 39(9):1631-1648. PubMed ID: 30606758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential covariation in taste responsiveness to bitter stimuli in rats.
    Brasser SM; Mozhui K; Smith DV
    Chem Senses; 2005 Nov; 30(9):793-9. PubMed ID: 16267162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bitter-responsive gustatory neurons in the rat parabrachial nucleus.
    Geran LC; Travers SP
    J Neurophysiol; 2009 Mar; 101(3):1598-612. PubMed ID: 19129294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rats are unable to discriminate quinine from diverse bitter stimuli.
    Martin LE; Kay KE; Torregrossa AM
    Am J Physiol Regul Integr Comp Physiol; 2019 Dec; 317(6):R793-R802. PubMed ID: 31596113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse bitter stimuli elicit highly similar patterns of Fos-like immunoreactivity in the nucleus of the solitary tract.
    Chan CY; Yoo JE; Travers SP
    Chem Senses; 2004 Sep; 29(7):573-81. PubMed ID: 15337683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats.
    King CT; Garcea M; Spector AC
    J Comp Neurol; 2014 Aug; 522(11):2498-517. PubMed ID: 24477770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural responses to bitter compounds in rats.
    Dahl M; Erickson RP; Simon SA
    Brain Res; 1997 May; 756(1-2):22-34. PubMed ID: 9187310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rats fail to discriminate quinine from denatonium: implications for the neural coding of bitter-tasting compounds.
    Spector AC; Kopka SL
    J Neurosci; 2002 Mar; 22(5):1937-41. PubMed ID: 11880524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the T1r3 taste receptor to the response properties of central gustatory neurons.
    Lemon CH; Margolskee RF
    J Neurophysiol; 2009 May; 101(5):2459-71. PubMed ID: 19279151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing GABAergic Tone in the Rostral Nucleus of the Solitary Tract Reconfigures Sensorimotor Neural Activity.
    Sammons JD; Bass CE; Victor JD; Di Lorenzo PM
    J Neurosci; 2021 Jan; 41(3):489-501. PubMed ID: 33234608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gustatory neural coding in the cortex of the alert cynomolgus macaque: the quality of bitterness.
    Scott TR; Giza BK; Yan J
    J Neurophysiol; 1999 Jan; 81(1):60-71. PubMed ID: 9914267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats.
    Lemon CH; Wilson DM; Brasser SM
    J Neurophysiol; 2011 Dec; 106(6):3145-56. PubMed ID: 21918002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distinctiveness of ionic and nonionic bitter stimuli.
    Frank ME; Bouverat BP; MacKinnon BI; Hettinger TP
    Physiol Behav; 2004 Jan; 80(4):421-31. PubMed ID: 14741226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of central gustatory coding by temperature.
    Wilson DM; Lemon CH
    J Neurophysiol; 2013 Sep; 110(5):1117-29. PubMed ID: 23761701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in responses and temporal coding of tastants of similar quality in the nucleus of the solitary tract of the rat.
    Roussin AT; Victor JD; Chen JY; Di Lorenzo PM
    J Neurophysiol; 2008 Feb; 99(2):644-55. PubMed ID: 17913985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coding in the mammalian gustatory system.
    Carleton A; Accolla R; Simon SA
    Trends Neurosci; 2010 Jul; 33(7):326-34. PubMed ID: 20493563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of neuronal responses in the nucleus of the solitary tract suggests sensorimotor integration in the neural code for taste.
    Denman AJ; Sammons JD; Victor JD; Di Lorenzo PM
    J Neurophysiol; 2019 Feb; 121(2):634-645. PubMed ID: 30565959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.