BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22845041)

  • 1. Nanoparticles via nanoprecipitation process.
    Minost A; Delaveau J; Bolzinger MA; Fessi H; Elaissari A
    Recent Pat Drug Deliv Formul; 2012 Dec; 6(3):250-8. PubMed ID: 22845041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices.
    Lepeltier E; Bourgaux C; Couvreur P
    Adv Drug Deliv Rev; 2014 May; 71():86-97. PubMed ID: 24384372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles.
    Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS
    ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoprecipitation process: From encapsulation to drug delivery.
    Martínez Rivas CJ; Tarhini M; Badri W; Miladi K; Greige-Gerges H; Nazari QA; Galindo Rodríguez SA; Román RÁ; Fessi H; Elaissari A
    Int J Pharm; 2017 Oct; 532(1):66-81. PubMed ID: 28801107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmaceutical polymeric nanoparticles prepared by the double emulsion- solvent evaporation technique.
    Piñón-Segundo E; Nava-Arzaluz MG; Lechuga-Ballesteros D
    Recent Pat Drug Deliv Formul; 2012 Dec; 6(3):224-35. PubMed ID: 22734870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation.
    Legrand P; Lesieur S; Bochot A; Gref R; Raatjes W; Barratt G; Vauthier C
    Int J Pharm; 2007 Nov; 344(1-2):33-43. PubMed ID: 17616282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.
    Cavallaro G; Craparo EF; Sardo C; Lamberti G; Barba AA; Dalmoro A
    Int J Pharm; 2015 Nov; 495(2):719-27. PubMed ID: 26410757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications.
    Mendoza-Muñoz N; Quintanar-Guerrero D; Allémann E
    Recent Pat Drug Deliv Formul; 2012 Dec; 6(3):236-49. PubMed ID: 22734871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles.
    Nava-Arzaluz MG; Piñón-Segundo E; Ganem-Rondero A; Lechuga-Ballesteros D
    Recent Pat Drug Deliv Formul; 2012 Dec; 6(3):209-23. PubMed ID: 22734869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research.
    Elzoghby AO
    J Control Release; 2013 Dec; 172(3):1075-91. PubMed ID: 24096021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Furan-functionalized co-polymers for targeted drug delivery: characterization, self-assembly and drug encapsulation.
    Shi M; Shoichet MS
    J Biomater Sci Polym Ed; 2008; 19(9):1143-57. PubMed ID: 18727857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications.
    Sgorla D; Bunhak ÉJ; Cavalcanti OA; Fonte P; Sarmento B
    Expert Opin Drug Deliv; 2016 Sep; 13(9):1301-9. PubMed ID: 27110648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.
    Aluri R; Jayakannan M
    Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery.
    Nicolas J; Mura S; Brambilla D; Mackiewicz N; Couvreur P
    Chem Soc Rev; 2013 Feb; 42(3):1147-235. PubMed ID: 23238558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone and metal targeted polymeric nanoparticles (US20150125391 A1): a patent evaluation.
    Li L; Huang Q; Wang C; Wang X; Xiao J; Zhang Q; Cheng Y
    Expert Opin Ther Pat; 2016 Sep; 26(9):987-91. PubMed ID: 27414194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Overview of the Recent Developments and Patents in the Field of Pharmaceutical Nanotechnology.
    Purohit D; Manchanda D; Makhija M; Rathi J; Verma R; Kaushik D; Pandey P
    Recent Pat Nanotechnol; 2021; 15(1):15-34. PubMed ID: 32912128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches.
    Fonte P; Araújo F; Silva C; Pereira C; Reis S; Santos HA; Sarmento B
    Biotechnol Adv; 2015 Nov; 33(6 Pt 3):1342-54. PubMed ID: 25728065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block copolymers for drug delivery nano systems (DDnSs).
    Kaditi E; Mountrichas G; Pispas S; Demetzos C
    Curr Med Chem; 2012; 19(29):5088-100. PubMed ID: 22963634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural and synthetic poly(malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers.
    Loyer P; Cammas-Marion S
    J Drug Target; 2014 Aug; 22(7):556-75. PubMed ID: 25012064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.