BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22845191)

  • 1. Modeling the uptake of semivolatile organic compounds by passive air samplers: importance of mass transfer processes within the porous sampling media.
    Zhang X; Wania F
    Environ Sci Technol; 2012 Sep; 46(17):9563-70. PubMed ID: 22845191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sampling medium side resistance to uptake of semivolatile organic compounds in passive air samplers.
    Zhang X; Tsurukawa M; Nakano T; Lei YD; Wania F
    Environ Sci Technol; 2011 Dec; 45(24):10509-15. PubMed ID: 22047405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of sampler configuration on the uptake kinetics of a passive air sampler.
    Zhang X; Wong C; Lei YD; Wania F
    Environ Sci Technol; 2012 Jan; 46(1):397-403. PubMed ID: 22103289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global pilot study of legacy and emerging persistent organic pollutants using sorbent-impregnated polyurethane foam disk passive air samplers.
    Genualdi S; Lee SC; Shoeib M; Gawor A; Ahrens L; Harner T
    Environ Sci Technol; 2010 Jul; 44(14):5534-9. PubMed ID: 20578700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of polydimethylsiloxane and polyurethane foam passive air samplers for measuring semi volatile organic compounds using a novel exposure chamber design.
    Tromp PC; Beeltje H; Okeme JO; Vermeulen R; Pronk A; Diamond ML
    Chemosphere; 2019 Jul; 227():435-443. PubMed ID: 31003128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants.
    Chaemfa C; Wild E; Davison B; Barber JL; Jones KC
    J Environ Monit; 2009 Jun; 11(6):1135-9. PubMed ID: 19513443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of reference chemicals to determine passive uptake rates of common indoor air VOCs by collocation deployment of active and passive samplers.
    Xian Q; Feng YL; Chan CC; Zhu J
    J Environ Monit; 2011 Sep; 13(9):2527-34. PubMed ID: 21773627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.
    Woolfenden E
    J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorbent-impregnated polyurethane foam disk for passive air sampling of volatile fluorinated chemicals.
    Shoeib M; Harner T; Lee SC; Lane D; Zhu J
    Anal Chem; 2008 Feb; 80(3):675-82. PubMed ID: 18179247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamic modeling of two passive samplers.
    Thomas J; Holsen TM; Dhaniyala S
    Environ Pollut; 2006 Nov; 144(2):384-92. PubMed ID: 16563582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of wind on the chemical uptake kinetics of a passive air sampler.
    Zhang X; Brown TN; Ansari A; Yeun B; Kitaoka K; Kondo A; Lei YD; Wania F
    Environ Sci Technol; 2013 Jul; 47(14):7868-75. PubMed ID: 23802579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.
    Tuduri L; Harner T; Hung H
    Environ Pollut; 2006 Nov; 144(2):377-83. PubMed ID: 16563580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the role of the sampler housing in limiting uptake of semivolatile organic compounds in passive air samplers.
    Zhang X; Hoang M; Lei YD; Wania F
    Environ Sci Process Impacts; 2015 Dec; 17(12):2006-12. PubMed ID: 26598925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of XAD-2 resin-based passive samplers and SPME-GC-MS/MS analysis for the monitoring of spatial and temporal variations of atmospheric pesticides in Luxembourg.
    Schummer C; Tuduri L; Briand O; Appenzeller BM; Millet M
    Environ Pollut; 2012 Nov; 170():88-94. PubMed ID: 22771355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling bioaccumulation of semi-volatile organic compounds (SOCs) from air in plants based on allometric principles.
    Steyaert NL; Hauck M; Van Hulle SW; Hendriks AJ
    Chemosphere; 2009 Oct; 77(6):727-32. PubMed ID: 19766288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of sorbent impregnated polyurethane foam (SIP) disk passive air samplers for investigating organochlorine pesticides and polybrominated diphenyl ethers at the global scale.
    Koblizkova M; Genualdi S; Lee SC; Harner T
    Environ Sci Technol; 2012 Jan; 46(1):391-6. PubMed ID: 22103600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field calibration of polyurethane foam disk passive air samplers for PBDEs.
    Chaemfa C; Barber JL; Moeckel C; Gocht T; Harner T; Holoubek I; Klanova J; Jones KC
    J Environ Monit; 2009 Oct; 11(10):1859-65. PubMed ID: 19809709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling short-term variability of semivolatile organic chemicals in air at a local scale: an integrated modeling approach.
    Morselli M; Ghirardello D; Semplice M; Di Guardo A
    Environ Pollut; 2011 May; 159(5):1406-12. PubMed ID: 21292363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.
    Chaemfa C; Barber JL; Gocht T; Harner T; Holoubek I; Klanova J; Jones KC
    Environ Pollut; 2008 Dec; 156(3):1290-7. PubMed ID: 18474408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the uptake of neutral organic chemicals on XAD passive air samplers under variable temperatures, external wind speeds and ambient air concentrations (PAS-SIM).
    Armitage JM; Hayward SJ; Wania F
    Environ Sci Technol; 2013; 47(23):13546-54. PubMed ID: 24175752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.