These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 22845497)
1. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Reimann J; Lassak K; Khadouma S; Ettema TJ; Yang N; Driessen AJ; Klingl A; Albers SV Mol Microbiol; 2012 Oct; 86(1):24-36. PubMed ID: 22845497 [TBL] [Abstract][Full Text] [Related]
2. Control of archaellation in Sulfolobus acidocaldarius: unravelling of the regulation of surface structure biosynthesis in Archaea begins. Jarrell KF Mol Microbiol; 2012 Oct; 86(1):1-5. PubMed ID: 22857613 [TBL] [Abstract][Full Text] [Related]
3. Structure and interactions of the archaeal motility repression module ArnA-ArnB that modulates archaellum gene expression in Hoffmann L; Anders K; Bischof LF; Ye X; Reimann J; Khadouma S; Pham TK; van der Does C; Wright PC; Essen LO; Albers SV J Biol Chem; 2019 May; 294(18):7460-7471. PubMed ID: 30902813 [TBL] [Abstract][Full Text] [Related]
6. Expanding the archaellum regulatory network - the eukaryotic protein kinases ArnC and ArnD influence motility of Sulfolobus acidocaldarius. Hoffmann L; Schummer A; Reimann J; Haurat MF; Wilson AJ; Beeby M; Warscheid B; Albers SV Microbiologyopen; 2017 Feb; 6(1):. PubMed ID: 27771939 [TBL] [Abstract][Full Text] [Related]
7. N-Glycosylation of the archaellum filament is not important for archaella assembly and motility, although N-Glycosylation is essential for motility in Sulfolobus acidocaldarius. Meyer BH; Birich A; Albers SV Biochimie; 2015 Nov; 118():294-301. PubMed ID: 25447136 [TBL] [Abstract][Full Text] [Related]
8. ArnS, a kinase involved in starvation-induced archaellum expression. Haurat MF; Figueiredo AS; Hoffmann L; Li L; Herr K; J Wilson A; Beeby M; Schaber J; Albers SV Mol Microbiol; 2017 Jan; 103(1):181-194. PubMed ID: 27731916 [TBL] [Abstract][Full Text] [Related]
9. The Phosphatase PP2A Interacts With ArnA and ArnB to Regulate the Oligomeric State and the Stability of the ArnA/B Complex. Ye X; Vogt MS; van der Does C; Bildl W; Schulte U; Essen LO; Albers SV Front Microbiol; 2020; 11():1849. PubMed ID: 32973695 [TBL] [Abstract][Full Text] [Related]
10. The archaellum: a rotating type IV pilus. Shahapure R; Driessen RP; Haurat MF; Albers SV; Dame RT Mol Microbiol; 2014 Feb; 91(4):716-23. PubMed ID: 24330313 [TBL] [Abstract][Full Text] [Related]
11. The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum. Lassak K; Peeters E; Wróbel S; Albers SV Mol Microbiol; 2013 Apr; 88(1):125-39. PubMed ID: 23461567 [TBL] [Abstract][Full Text] [Related]
12. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Reimann J; Esser D; Orell A; Amman F; Pham TK; Noirel J; Lindås AC; Bernander R; Wright PC; Siebers B; Albers SV Mol Cell Proteomics; 2013 Dec; 12(12):3908-23. PubMed ID: 24078887 [TBL] [Abstract][Full Text] [Related]
13. FlaX, a unique component of the crenarchaeal archaellum, forms oligomeric ring-shaped structures and interacts with the motor ATPase FlaI. Banerjee A; Ghosh A; Mills DJ; Kahnt J; Vonck J; Albers SV J Biol Chem; 2012 Dec; 287(52):43322-30. PubMed ID: 23129770 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the specific interaction between archaeal FHA domain-containing protein and the promoter of a flagellar-like gene-cluster and its regulation by phosphorylation. Duan X; He ZG Biochem Biophys Res Commun; 2011 Apr; 407(1):242-7. PubMed ID: 21382340 [TBL] [Abstract][Full Text] [Related]
15. Expression, Purification, and Assembly of Archaellum Subcomplexes of Sulfolobus acidocaldarius. Chaudhury P; Tripp P; Albers SV Methods Mol Biol; 2018; 1764():307-314. PubMed ID: 29605923 [TBL] [Abstract][Full Text] [Related]
16. The structure of the periplasmic FlaG-FlaF complex and its essential role for archaellar swimming motility. Tsai CL; Tripp P; Sivabalasarma S; Zhang C; Rodriguez-Franco M; Wipfler RL; Chaudhury P; Banerjee A; Beeby M; Whitaker RJ; Tainer JA; Albers SV Nat Microbiol; 2020 Jan; 5(1):216-225. PubMed ID: 31844299 [TBL] [Abstract][Full Text] [Related]
17. Wing phosphorylation is a major functional determinant of the Lrs14-type biofilm and motility regulator AbfR1 in Sulfolobus acidocaldarius. Li L; Banerjee A; Bischof LF; Maklad HR; Hoffmann L; Henche AL; Veliz F; Bildl W; Schulte U; Orell A; Essen LO; Peeters E; Albers SV Mol Microbiol; 2017 Sep; 105(5):777-793. PubMed ID: 28628237 [TBL] [Abstract][Full Text] [Related]
18. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511 [No Abstract] [Full Text] [Related]
19. Hot and sweet: protein glycosylation in Crenarchaeota. Meyer BH; Albers SV Biochem Soc Trans; 2013 Feb; 41(1):384-92. PubMed ID: 23356316 [TBL] [Abstract][Full Text] [Related]
20. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. Chen L; Brügger K; Skovgaard M; Redder P; She Q; Torarinsson E; Greve B; Awayez M; Zibat A; Klenk HP; Garrett RA J Bacteriol; 2005 Jul; 187(14):4992-9. PubMed ID: 15995215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]