These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22845680)

  • 21. A comparative theoretical study of dipeptide solvation in water.
    Hugosson HW; Laio A; Maurer P; Rothlisberger U
    J Comput Chem; 2006 Apr; 27(5):672-84. PubMed ID: 16477697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect.
    Mazur K; Heisler IA; Meech SR
    J Phys Chem B; 2011 Mar; 115(11):2563-73. PubMed ID: 21355600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding THz spectra of aqueous solutions: glycine in light and heavy water.
    Sun J; Niehues G; Forbert H; Decka D; Schwaab G; Marx D; Havenith M
    J Am Chem Soc; 2014 Apr; 136(13):5031-8. PubMed ID: 24606118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water interaction differences determine the relative energetic stability of the polyproline II conformation of the alanine dipeptide in aqueous environments.
    Mirkin NG; Krimm S
    Biopolymers; 2012 Oct; 97(10):789-94. PubMed ID: 22806498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On easy implementation of a variant of the replica exchange with solute tempering in GROMACS.
    Terakawa T; Kameda T; Takada S
    J Comput Chem; 2011 May; 32(7):1228-34. PubMed ID: 21425280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on the conformational equilibrium of the alanine dipeptide in water solution by using the averaged solvent electrostatic potential from molecular dynamics methodology.
    García-Prieto FF; Fdez Galván I; Aguilar MA; Martín ME
    J Chem Phys; 2011 Nov; 135(19):194502. PubMed ID: 22112087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dynamics of peptide-water interactions in dialanine: An ultrafast amide I 2D IR and computational spectroscopy study.
    Feng CJ; Tokmakoff A
    J Chem Phys; 2017 Aug; 147(8):085101. PubMed ID: 28863528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A THz/FTIR fingerprint of the solvated proton: evidence for Eigen structure and Zundel dynamics.
    Decka D; Schwaab G; Havenith M
    Phys Chem Chem Phys; 2015 May; 17(17):11898-907. PubMed ID: 25872169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mode specific THz spectra of solvated amino acids using the AMOEBA polarizable force field.
    Esser A; Belsare S; Marx D; Head-Gordon T
    Phys Chem Chem Phys; 2017 Feb; 19(7):5579-5590. PubMed ID: 28165073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct calculations of vibrational absorption and circular dichroism spectra of alanine dipeptide analog in water: quantum mechanical/molecular mechanical molecular dynamics simulations.
    Yang S; Cho M
    J Chem Phys; 2009 Oct; 131(13):135102. PubMed ID: 19814574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast dynamics and hydrogen-bond structure in aqueous solutions of model peptides.
    Mazur K; Heisler IA; Meech SR
    J Phys Chem B; 2010 Aug; 114(32):10684-91. PubMed ID: 20666567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing solute-water van der Waals interactions to reproduce solvation free energies.
    Nerenberg PS; Jo B; So C; Tripathy A; Head-Gordon T
    J Phys Chem B; 2012 Apr; 116(15):4524-34. PubMed ID: 22443635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
    Yagasaki T; Saito S
    Acc Chem Res; 2009 Sep; 42(9):1250-8. PubMed ID: 19469530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel method for analyzing energy relaxation in condensed phases using nonequilibrium molecular dynamics simulations: application to the energy relaxation of intermolecular motions in liquid water.
    Yagasaki T; Saito S
    J Chem Phys; 2011 May; 134(18):184503. PubMed ID: 21568517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycine in aqueous solution: solvation shells, interfacial water, and vibrational spectroscopy from ab initio molecular dynamics.
    Sun J; Bousquet D; Forbert H; Marx D
    J Chem Phys; 2010 Sep; 133(11):114508. PubMed ID: 20866146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Periodic orbits in biological molecules: phase space structures and selectivity in alanine dipeptide.
    Farantos SC
    J Chem Phys; 2007 May; 126(17):175101. PubMed ID: 17492886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-sweep methods for free energy calculations.
    Maragliano L; Vanden-Eijnden E
    J Chem Phys; 2008 May; 128(18):184110. PubMed ID: 18532802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarizable molecular dynamics simulations of aqueous dipeptides.
    Kucukkal TG; Stuart SJ
    J Phys Chem B; 2012 Aug; 116(30):8733-40. PubMed ID: 22747103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the anharmonicity of lattice vibrations in water-containing molecular crystals through the terahertz spectroscopy of L-serine monohydrate.
    King MD; Buchanan WD; Korter TM
    J Phys Chem A; 2010 Sep; 114(35):9570-8. PubMed ID: 20715798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An application of coupled reference interaction site model/molecular dynamics to the conformational analysis of the alanine dipeptide.
    Freedman H; Truong TN
    J Chem Phys; 2004 Dec; 121(24):12447-56. PubMed ID: 15606265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.