These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22846311)

  • 1. Development and characterization of an open-ended shock tube for the study of blast mtbi.
    Shah Ms AS; Stemper Phd BD; Pintar Phd FA
    Biomed Sci Instrum; 2012; 48():393-400. PubMed ID: 22846311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.
    Courtney AC; Andrusiv LP; Courtney MW
    Rev Sci Instrum; 2012 Apr; 83(4):045111. PubMed ID: 22559580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multiscale Approach to Blast Neurotrauma Modeling: Part I - Development of Novel Test Devices for in vivo and in vitro Blast Injury Models.
    Panzer MB; Matthews KA; Yu AW; Morrison B; Meaney DF; Bass CR
    Front Neurol; 2012; 3():46. PubMed ID: 22470367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Filtering on Experimental Blast Overpressure Measurements.
    Alphonse VD; Kemper AR; Duma SM
    Biomed Sci Instrum; 2015; 51():143-50. PubMed ID: 25996711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for Traumatic Brain Injury Studies.
    Sutar S; Ganpule SG
    J Neurotrauma; 2021 Jun; 38(12):1717-1729. PubMed ID: 33108952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
    Reneer DV; Hisel RD; Hoffman JM; Kryscio RJ; Lusk BT; Geddes JW
    J Neurotrauma; 2011 Jan; 28(1):95-104. PubMed ID: 21083431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Gas-Driven Shock Tubes to Produce Blast Wave Signatures.
    Kumar R; Nedungadi A
    Front Neurol; 2020; 11():90. PubMed ID: 32153491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of driver gas composition on production of scaled Friedlander waveforms in an open-ended shock tube model.
    Reeder EL; Liber ML; Traubert OD; O'Connell CJ; Turner RC; Robson MJ
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36252558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.
    Sundaramurthy A; Chandra N
    Front Neurol; 2014; 5():253. PubMed ID: 25520701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Note: A table-top blast driven shock tube.
    Courtney MW; Courtney AC
    Rev Sci Instrum; 2010 Dec; 81(12):126103. PubMed ID: 21198058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.
    Kuriakose M; Skotak M; Misistia A; Kahali S; Sundaramurthy A; Chandra N
    PLoS One; 2016; 11(9):e0161597. PubMed ID: 27603017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shock Wave Physics as Related to Primary Non-Impact Blast-Induced Traumatic Brain Injury.
    Rutter B; Song H; DePalma RG; Hubler G; Cui J; Gu Z; Johnson CE
    Mil Med; 2021 Jan; 186(Suppl 1):601-609. PubMed ID: 33499439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a controlled shock wave delivered by a pneumatic table-top gas driven shock tube.
    Swietek B; Skotak M; Chandra N; Pfister BJ
    Rev Sci Instrum; 2019 Jul; 90(7):075116. PubMed ID: 31370428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of serial bio-shock tubes and their application.
    Wang Z; Sun L; Yang Z; Leng H; Jiang J; Yu H; Gu J; Li Z
    Chin Med J (Engl); 1998 Feb; 111(2):109-13. PubMed ID: 10374367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures.
    Skotak M; Wang F; Alai A; Holmberg A; Harris S; Switzer RC; Chandra N
    J Neurotrauma; 2013 Jul; 30(13):1147-60. PubMed ID: 23362798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of secondary flow phenomena and their effect on primary shock conditions in shock tubes: Experimentation and numerical model.
    Kahali S; Townsend M; Mendez Nguyen M; Kim J; Alay E; Skotak M; Chandra N
    PLoS One; 2020; 15(1):e0227125. PubMed ID: 31945083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury.
    Gullotti DM; Beamer M; Panzer MB; Chen YC; Patel TP; Yu A; Jaumard N; Winkelstein B; Bass CR; Morrison B; Meaney DF
    J Biomech Eng; 2014 Sep; 136(9):091004. PubMed ID: 24950710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study on Intracranial Pressure and Biomechanical Response in Rats Under the Blast Wave.
    Huang X; Xia B; Chang L; Liao Z; Zhao H; Zhang L; Cai Z
    J Neurotrauma; 2024 Mar; 41(5-6):671-684. PubMed ID: 35906796
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.