These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22846397)

  • 81. Advances in the application of gas vesicles in medical imaging and disease treatment.
    Feng R; Lan J; Goh MC; Du M; Chen Z
    J Biol Eng; 2024 Jul; 18(1):41. PubMed ID: 39044273
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Recent Advances in the Study of Gas Vesicle Proteins and Application of Gas Vesicles in Biomedical Research.
    Pfeifer F
    Life (Basel); 2022 Sep; 12(9):. PubMed ID: 36143491
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Bioengineering of Halobacterium sp. NRC-1 gas vesicle nanoparticles with GvpC fusion protein produced in E. coli.
    Kim JM; Kim YS; Kim YR; Choi MJ; DasSarma P; DasSarma S
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2043-2052. PubMed ID: 35230496
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Archaeosomes and Gas Vesicles as Tools for Vaccine Development.
    Adamiak N; Krawczyk KT; Locht C; Kowalewicz-Kulbat M
    Front Immunol; 2021; 12():746235. PubMed ID: 34567012
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Microbial gas vesicles as nanotechnology tools: exploiting intracellular organelles for translational utility in biotechnology, medicine and the environment.
    Hill AM; Salmond GPC
    Microbiology (Reading); 2020 Jun; 166(6):501-509. PubMed ID: 32324529
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Structural and Immunological Characterization of Novel Recombinant MOMP-Based Chlamydial Antigens.
    Madico G; Gursky O; Fairman J; Massari P
    Vaccines (Basel); 2017 Dec; 6(1):. PubMed ID: 29295593
    [No Abstract]   [Full Text] [Related]  

  • 87. Bioengineering novel floating nanoparticles for protein and drug delivery.
    DasSarma P; Karan R; Kim JM; Pecher W; DasSarma S
    Mater Today Proc; 2016; 3(2):206-210. PubMed ID: 27158595
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Immunogenicity and protective potential of a Plasmodium spp. enolase peptide displayed on archaeal gas vesicle nanoparticles.
    Dutta S; DasSarma P; DasSarma S; Jarori GK
    Malar J; 2015 Oct; 14():406. PubMed ID: 26463341
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Gas Vesicle Nanoparticles for Antigen Display.
    DasSarma S; DasSarma P
    Vaccines (Basel); 2015 Sep; 3(3):686-702. PubMed ID: 26350601
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Haloarchaea and the formation of gas vesicles.
    Pfeifer F
    Life (Basel); 2015 Feb; 5(1):385-402. PubMed ID: 25648404
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Haloarchaeal gas vesicle nanoparticles displaying Salmonella SopB antigen reduce bacterial burden when administered with live attenuated bacteria.
    DasSarma P; Negi VD; Balakrishnan A; Karan R; Barnes S; Ekulona F; Chakravortty D; DasSarma S
    Vaccine; 2014 Jul; 32(35):4543-4549. PubMed ID: 24950351
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research.
    Vasilevsky S; Greub G; Nardelli-Haefliger D; Baud D
    Clin Microbiol Rev; 2014 Apr; 27(2):346-70. PubMed ID: 24696438
    [TBL] [Abstract][Full Text] [Related]  

  • 93. An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea.
    DasSarma S; Karan R; DasSarma P; Barnes S; Ekulona F; Smith B
    BMC Biotechnol; 2013 Dec; 13():112. PubMed ID: 24359319
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles.
    Cambridge CD; Singh SR; Waffo AB; Fairley SJ; Dennis VA
    Int J Nanomedicine; 2013; 8():1759-71. PubMed ID: 23690681
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Hepatitis B virus surface antigen as delivery vector can enhance Chlamydia trachomatis MOMP multi-epitope immune response in mice.
    Zhu S; Feng Y; Rao P; Xue X; Chen S; Li W; Zhu G; Zhang L
    Appl Microbiol Biotechnol; 2014 May; 98(9):4107-17. PubMed ID: 24458565
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Recombinant expression of Chlamydia trachomatis major outer membrane protein in E. Coli outer membrane as a substrate for vaccine research.
    Wen Z; Boddicker MA; Kaufhold RM; Khandelwal P; Durr E; Qiu P; Lucas BJ; Nahas DD; Cook JC; Touch S; Skinner JM; Espeseth AS; Przysiecki CT; Zhang L
    BMC Microbiol; 2016 Jul; 16(1):165. PubMed ID: 27464881
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Identification of immunodominant linear B-cell epitopes within the major outer membrane protein of Chlamydia trachomatis.
    Zhu S; Chen J; Zheng M; Gong W; Xue X; Li W; Zhang L
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):771-8. PubMed ID: 20923859
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates.
    Vasilevsky S; Stojanov M; Greub G; Baud D
    Virulence; 2016; 7(1):11-22. PubMed ID: 26580416
    [TBL] [Abstract][Full Text] [Related]  

  • 99. In vitro assessment of halobacterial gas vesicles as a Chlamydia vaccine display and delivery system.
    Childs TS; Webley WC
    Vaccine; 2012 Sep; 30(41):5942-8. PubMed ID: 22846397
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.