These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 22846601)
1. Isoniazid as a substrate and inhibitor of myeloperoxidase: identification of amine adducts and the influence of superoxide dismutase on their formation. Forbes LV; Furtmüller PG; Khalilova I; Turner R; Obinger C; Kettle AJ Biochem Pharmacol; 2012 Oct; 84(7):949-60. PubMed ID: 22846601 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites. Khan SR; Morgan AG; Michail K; Srivastava N; Whittal RM; Aljuhani N; Siraki AG Biochem Pharmacol; 2016 Apr; 106():46-55. PubMed ID: 26867495 [TBL] [Abstract][Full Text] [Related]
3. Serotonin as a physiological substrate for myeloperoxidase and its superoxide-dependent oxidation to cytotoxic tryptamine-4,5-dione. Ximenes VF; Maghzal GJ; Turner R; Kato Y; Winterbourn CC; Kettle AJ Biochem J; 2009 Dec; 425(1):285-93. PubMed ID: 19828014 [TBL] [Abstract][Full Text] [Related]
4. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells. Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243 [TBL] [Abstract][Full Text] [Related]
5. Eosinophil peroxidase oxidizes isoniazid to form the active metabolite against M. tuberculosis, isoniazid-NAD Babu D; Morgan AG; Reiz B; Whittal RM; Almas S; Lacy P; Siraki AG Chem Biol Interact; 2019 May; 305():48-53. PubMed ID: 30922765 [TBL] [Abstract][Full Text] [Related]
6. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase. Vlasova II; Sokolov AV; Arnhold J J Inorg Biochem; 2012 Jan; 106(1):76-83. PubMed ID: 22112843 [TBL] [Abstract][Full Text] [Related]
7. Reactions of superoxide with myeloperoxidase. Kettle AJ; Anderson RF; Hampton MB; Winterbourn CC Biochemistry; 2007 Apr; 46(16):4888-97. PubMed ID: 17381162 [TBL] [Abstract][Full Text] [Related]
8. Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design. Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Lehner I; Jakopitsch C; Arnhold J; Obinger C Biochem Pharmacol; 2005 Apr; 69(8):1149-57. PubMed ID: 15794935 [TBL] [Abstract][Full Text] [Related]
9. Secretion and inactivation of myeloperoxidase by isolated neutrophils. King CC; Jefferson MM; Thomas EL J Leukoc Biol; 1997 Mar; 61(3):293-302. PubMed ID: 9060452 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of desferrioxamine to nitroxide free radical by activated human neutrophils. Soriani M; Mazzuca S; Quaresima V; Minetti M Free Radic Biol Med; 1993 Jun; 14(6):589-99. PubMed ID: 7686874 [TBL] [Abstract][Full Text] [Related]
11. Myricitrin as a substrate and inhibitor of myeloperoxidase: implications for the pharmacological effects of flavonoids. Meotti FC; Senthilmohan R; Harwood DT; Missau FC; Pizzolatti MG; Kettle AJ Free Radic Biol Med; 2008 Jan; 44(1):109-20. PubMed ID: 17963707 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Allegra M; Furtmüller PG; Jantschko W; Zederbauer M; Tesoriere L; Livrea MA; Obinger C Biochem Biophys Res Commun; 2005 Jul; 332(3):837-44. PubMed ID: 15913556 [TBL] [Abstract][Full Text] [Related]
13. Reactions of superoxide with myeloperoxidase and its products. Winterbourn CC; Kettle AJ Jpn J Infect Dis; 2004 Oct; 57(5):S31-3. PubMed ID: 15507767 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of tryptophan by redox intermediates of myeloperoxidase and inhibition of hypochlorous acid production. Kettle AJ; Candaeis LP Redox Rep; 2000; 5(4):179-84. PubMed ID: 10994871 [TBL] [Abstract][Full Text] [Related]
15. Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations. Koelsch M; Mallak R; Graham GG; Kajer T; Milligan MK; Nguyen LQ; Newsham DW; Keh JS; Kettle AJ; Scott KF; Ziegler JB; Pattison DI; Fu S; Hawkins CL; Rees MD; Davies MJ Biochem Pharmacol; 2010 Apr; 79(8):1156-64. PubMed ID: 19968966 [TBL] [Abstract][Full Text] [Related]
16. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Kettle AJ; Winterbourn CC Biochem J; 1988 Jun; 252(2):529-36. PubMed ID: 2843172 [TBL] [Abstract][Full Text] [Related]
17. Spectral and kinetic evidence for reaction of superoxide with compound I of myeloperoxidase. Kettle AJ; Maroz A; Woodroffe G; Winterbourn CC; Anderson RF Free Radic Biol Med; 2011 Dec; 51(12):2190-4. PubMed ID: 22002086 [TBL] [Abstract][Full Text] [Related]
18. Neutrophil- and myeloperoxidase-mediated metabolism of reduced nimesulide: evidence for bioactivation. Yang M; Chordia MD; Li F; Huang T; Linden J; Macdonald TL Chem Res Toxicol; 2010 Nov; 23(11):1691-700. PubMed ID: 20939553 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of hydroquinone by myeloperoxidase. Mechanism of stimulation by benzoquinone. Kettle AJ; Winterbourn CC J Biol Chem; 1992 Apr; 267(12):8319-24. PubMed ID: 1314822 [TBL] [Abstract][Full Text] [Related]
20. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide. Sampson JB; Ye Y; Rosen H; Beckman JS Arch Biochem Biophys; 1998 Aug; 356(2):207-13. PubMed ID: 9705211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]