These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22846874)

  • 1. Artificial neural network application for predicting soil distribution coefficient of nickel.
    Falamaki A
    J Environ Radioact; 2013 Jan; 115():6-12. PubMed ID: 22846874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks.
    Barron L; Havel J; Purcell M; Szpak M; Kelleher B; Paull B
    Analyst; 2009 Apr; 134(4):663-70. PubMed ID: 19305914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS.
    Tarazona JL; Guerrero J; Cabanzo R; Mejía-Ospino E
    Appl Opt; 2012 Mar; 51(7):B108-14. PubMed ID: 22410907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network and multiple regression model for nickel(II) adsorption on powdered activated carbons.
    Hema M; Srinivasan K
    J Environ Sci Eng; 2011 Jul; 53(3):237-44. PubMed ID: 23029923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer perceptron neural network for flow prediction.
    Araujo P; Astray G; Ferrerio-Lage JA; Mejuto JC; Rodriguez-Suarez JA; Soto B
    J Environ Monit; 2011 Jan; 13(1):35-41. PubMed ID: 21088795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling sulphur dioxide due to vehicular traffic using artificial neural network.
    Singh BK; Singh AK; Prasad SC
    J Environ Sci Eng; 2009 Oct; 51(4):277-82. PubMed ID: 21117421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.
    Sabour MR; Moftakhari Anasori Movahed S
    Chemosphere; 2017 Feb; 168():877-884. PubMed ID: 27836283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N
    J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network tomography: network replication from output surface geometry.
    Minnett RC; Smith AT; Lennon WC; Hecht-Nielsen R
    Neural Netw; 2011 Jun; 24(5):484-92. PubMed ID: 21377326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination of cardiac surgical risk using artificial neural networks.
    Buzatu DA; Taylor KK; Peret DC; Darsey JA; Lang NP
    J Surg Res; 2001 Jan; 95(1):61-6. PubMed ID: 11120637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSPR studies on soot-water partition coefficients of persistent organic pollutants by using artificial neural network.
    Jiao L
    Chemosphere; 2010 Jul; 80(6):671-5. PubMed ID: 20452639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of artificial neural networks (ANN) in the development of solid dosage forms.
    Bourquin J; Schmidli H; van Hoogevest P; Leuenberger H
    Pharm Dev Technol; 1997 May; 2(2):111-21. PubMed ID: 9552437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of artificial neural network to simultaneous spectrophotometric determination of Cu, Co and Ni].
    He CY; Sun YM; Wu GH; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):719-22. PubMed ID: 12945343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of human skin permeability using artificial neural network (ANN) modeling.
    Chen LJ; Lian GP; Han LJ
    Acta Pharmacol Sin; 2007 Apr; 28(4):591-600. PubMed ID: 17376301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear modeling approaches for urban air quality prediction.
    Singh KP; Gupta S; Kumar A; Shukla SP
    Sci Total Environ; 2012 Jun; 426():244-55. PubMed ID: 22542239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial neural networks applied to forecasting time series.
    Montaño Moreno JJ; Palmer Pol A; Muñoz Gracia P
    Psicothema; 2011 Apr; 23(2):322-9. PubMed ID: 21504688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil remediation time to achieve clean-up goals I: Influence of soil water content.
    Alvim-Ferraz Mda C; Albergaria JT; Delerue-Matos C
    Chemosphere; 2006 Feb; 62(5):853-60. PubMed ID: 15967477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural network integration of field observations for soil endocrine disruptor characterisation.
    Aitkenhead MJ; Rhind SM; Zhang ZL; Kyle CE; Coull MC
    Sci Total Environ; 2014 Jan; 468-469():240-8. PubMed ID: 24036219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial neural network modeling of apoptosis in gamma irradiated human lymphocytes.
    Liberda JJ; Schnarr K; Coulibaly P; Boreham DR
    Int J Radiat Biol; 2005 Nov; 81(11):827-40. PubMed ID: 16484152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.