These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22847493)

  • 1. Transforming between discrete and continuous angle distribution models: application to protein χ₁ torsions.
    Schmidt JM
    J Biomol NMR; 2012 Sep; 54(1):97-114. PubMed ID: 22847493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins.
    Schrauber H; Eisenhaber F; Argos P
    J Mol Biol; 1993 Mar; 230(2):592-612. PubMed ID: 8464066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile component-coupling model to account for substituent effects: application to polypeptide phi and chi(1) torsion related (3)J data.
    Schmidt JM
    J Magn Reson; 2007 May; 186(1):34-50. PubMed ID: 17292645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the calculation of ³Jαβ-coupling constants for side chains in proteins.
    Steiner D; Allison JR; Eichenberger AP; van Gunsteren WF
    J Biomol NMR; 2012 Jul; 53(3):223-46. PubMed ID: 22714630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Karplus curves for the protein side-chain 3J couplings.
    Schmidt JM
    J Biomol NMR; 2007 Apr; 37(4):287-301. PubMed ID: 17333486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-consistent Karplus parametrization of 3J couplings depending on the polypeptide side-chain torsion chi1.
    Pérez C; Löhr F; Rüterjans H; Schmidt JM
    J Am Chem Soc; 2001 Jul; 123(29):7081-93. PubMed ID: 11459487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molprobity's ultimate rotamer-library distributions for model validation.
    Hintze BJ; Lewis SM; Richardson JS; Richardson DC
    Proteins; 2016 Sep; 84(9):1177-89. PubMed ID: 27018641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.
    Jiang F; Han W; Wu YD
    Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotamer libraries and probabilities of transition between rotamers for the side chains in protein-protein binding.
    Kirys T; Ruvinsky AM; Tuzikov AV; Vakser IA
    Proteins; 2012 Aug; 80(8):2089-98. PubMed ID: 22544766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein design using continuous rotamers.
    Gainza P; Roberts KE; Donald BR
    PLoS Comput Biol; 2012 Jan; 8(1):e1002335. PubMed ID: 22279426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the mobility of methyl-bearing side chains in proteins from (3)J(CC) and (3)J(CN) couplings.
    Chou JJ; Case DA; Bax A
    J Am Chem Soc; 2003 Jul; 125(29):8959-66. PubMed ID: 12862493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side-chains in native and random coil protein conformations. Analysis of NMR coupling constants and chi1 torsion angle preferences.
    West NJ; Smith LJ
    J Mol Biol; 1998 Jul; 280(5):867-77. PubMed ID: 9671556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries.
    Huang X; Pearce R; Zhang Y
    J Chem Inf Model; 2020 Jan; 60(1):410-420. PubMed ID: 31851497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using quantum mechanics to improve estimates of amino acid side chain rotamer energies.
    Renfrew PD; Butterfoss GL; Kuhlman B
    Proteins; 2008 Jun; 71(4):1637-46. PubMed ID: 18076032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of isoleucine side-chain conformations in ground and excited states of proteins from chemical shifts.
    Hansen DF; Neudecker P; Kay LE
    J Am Chem Soc; 2010 Jun; 132(22):7589-91. PubMed ID: 20465253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the side-chain dihedral angle distributions of nonpolar, aromatic, and polar amino acids using hard sphere models.
    Zhou AQ; O'Hern CS; Regan L
    Proteins; 2014 Oct; 82(10):2574-84. PubMed ID: 24912976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side-chain chi(1) conformations in urea-denatured ubiquitin and protein G from (3)J coupling constants and residual dipolar couplings.
    Vajpai N; Gentner M; Huang JR; Blackledge M; Grzesiek S
    J Am Chem Soc; 2010 Mar; 132(9):3196-203. PubMed ID: 20155903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting dynamically-averaged scalar couplings in proteins.
    Lindorff-Larsen K; Best RB; Vendruscolo M
    J Biomol NMR; 2005 Aug; 32(4):273-80. PubMed ID: 16211481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of side chain conformations on local conformational features of amino acids and implication for force field development.
    Jiang F; Han W; Wu YD
    J Phys Chem B; 2010 May; 114(17):5840-50. PubMed ID: 20392111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of polypeptide chains as C alpha chains, C alpha chains with C beta, and C alpha chains with ellipsoidal lateral chains.
    Fogolari F; Esposito G; Viglino P; Cattarinussi S
    Biophys J; 1996 Mar; 70(3):1183-97. PubMed ID: 8785277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.