These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 22848391)
1. Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions. Jawhara S; Habib K; Maggiotto F; Pignede G; Vandekerckove P; Maes E; Dubuquoy L; Fontaine T; Guerardel Y; Poulain D PLoS One; 2012; 7(7):e40648. PubMed ID: 22848391 [TBL] [Abstract][Full Text] [Related]
2. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Jawhara S; Poulain D Med Mycol; 2007 Dec; 45(8):691-700. PubMed ID: 17885943 [TBL] [Abstract][Full Text] [Related]
4. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. Wheeler RT; Kombe D; Agarwala SD; Fink GR PLoS Pathog; 2008 Dec; 4(12):e1000227. PubMed ID: 19057660 [TBL] [Abstract][Full Text] [Related]
5. KRE5 gene null mutant strains of Candida albicans are avirulent and have altered cell wall composition and hypha formation properties. Herrero AB; Magnelli P; Mansour MK; Levitz SM; Bussey H; Abeijon C Eukaryot Cell; 2004 Dec; 3(6):1423-32. PubMed ID: 15590817 [TBL] [Abstract][Full Text] [Related]
6. Micafungin Enhances the Human Macrophage Response to Candida albicans through β-Glucan Exposure. Guirao-Abad JP; Sánchez-Fresneda R; Machado F; Argüelles JC; Martínez-Esparza M Antimicrob Agents Chemother; 2018 May; 62(5):. PubMed ID: 29483123 [TBL] [Abstract][Full Text] [Related]
7. A Small Aromatic Compound Has Antifungal Properties and Potential Anti-Inflammatory Effects against Intestinal Inflammation. Bortolus C; Billamboz M; Charlet R; Lecointe K; Sendid B; Ghinet A; Jawhara S Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30646601 [TBL] [Abstract][Full Text] [Related]
8. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067 [TBL] [Abstract][Full Text] [Related]
9. Effect of Candida albicans cell wall glucan as adjuvant for induction of autoimmune arthritis in mice. Hida S; Miura NN; Adachi Y; Ohno N J Autoimmun; 2005 Sep; 25(2):93-101. PubMed ID: 16242302 [TBL] [Abstract][Full Text] [Related]
10. Isolation of the Candida albicans homologs of Saccharomyces cerevisiae KRE6 and SKN1: expression and physiological function. Mio T; Yamada-Okabe T; Yabe T; Nakajima T; Arisawa M; Yamada-Okabe H J Bacteriol; 1997 Apr; 179(7):2363-72. PubMed ID: 9079924 [TBL] [Abstract][Full Text] [Related]
11. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. Jawhara S; Thuru X; Standaert-Vitse A; Jouault T; Mordon S; Sendid B; Desreumaux P; Poulain D J Infect Dis; 2008 Apr; 197(7):972-80. PubMed ID: 18419533 [TBL] [Abstract][Full Text] [Related]
12. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. Mio T; Adachi-Shimizu M; Tachibana Y; Tabuchi H; Inoue SB; Yabe T; Yamada-Okabe T; Arisawa M; Watanabe T; Yamada-Okabe H J Bacteriol; 1997 Jul; 179(13):4096-105. PubMed ID: 9209021 [TBL] [Abstract][Full Text] [Related]
13. Effect of Cinnamaldehyde on C. albicans cell wall and (1,3)- β - D-glucans in vivo. Deng JH; Zhang XG; Wang GS; Luo JN; Wang J; Qi XM; Li YL BMC Complement Med Ther; 2022 Jan; 22(1):32. PubMed ID: 35101002 [TBL] [Abstract][Full Text] [Related]
14. Gradual solubilization of Candida cell wall beta-glucan by oxidative degradation in mice. Miura NN; Miura T; Ohno N; Adachi Y; Watanabe M; Tamura H; Tanaka S; Yadomae T FEMS Immunol Med Microbiol; 1998 Jun; 21(2):123-9. PubMed ID: 9685001 [TBL] [Abstract][Full Text] [Related]
15. beta-Glucan of Candida albicans cell wall causes the subversion of human monocyte differentiation into dendritic cells. Nisini R; Torosantucci A; Romagnoli G; Chiani P; Donati S; Gagliardi MC; Teloni R; Sargentini V; Mariotti S; Iorio E; Cassone A J Leukoc Biol; 2007 Nov; 82(5):1136-42. PubMed ID: 17656653 [TBL] [Abstract][Full Text] [Related]
16. Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Tada H; Nemoto E; Shimauchi H; Watanabe T; Mikami T; Matsumoto T; Ohno N; Tamura H; Shibata K; Akashi S; Miyake K; Sugawara S; Takada H Microbiol Immunol; 2002; 46(7):503-12. PubMed ID: 12222939 [TBL] [Abstract][Full Text] [Related]
17. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro. Williams R; Dias DA; Jayasinghe N; Roessner U; Bennett LE Food Chem; 2016 Apr; 197(Pt A):761-8. PubMed ID: 26617014 [TBL] [Abstract][Full Text] [Related]
18. Identification of glucan-mannoprotein complexes in the cell wall of Candida albicans using a monoclonal antibody that reacts with a (1,6)-beta-glucan epitope. Sanjuán R; Zueco J; Stock R; Font de Mora J; Sentandreu R Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1545-51. PubMed ID: 7551022 [TBL] [Abstract][Full Text] [Related]