These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22848403)

  • 41. A peptide of the alpha 3(IV) chain of type IV collagen modulates stimulated neutrophil function via activation of cAMP-dependent protein kinase and Ser/Thr protein phosphatase.
    Fawzi A; Robinet A; Monboisse JC; Ziaie Z; Kefalides NA; Bellon G
    Cell Signal; 2000 May; 12(5):327-35. PubMed ID: 10822174
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Brain protein serine/threonine phosphatases.
    Price NE; Mumby MC
    Curr Opin Neurobiol; 1999 Jun; 9(3):336-42. PubMed ID: 10395578
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Covalent modification cycles through the spatial prism.
    Alam-Nazki A; Krishnan J
    Biophys J; 2013 Oct; 105(7):1720-31. PubMed ID: 24094413
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of signal transduction through protein cysteine oxidation.
    Cross JV; Templeton DJ
    Antioxid Redox Signal; 2006; 8(9-10):1819-27. PubMed ID: 16987034
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The relationship between insulin signaling and protein phosphatase 1 activation.
    Ragolia L; Begum N
    Methods Mol Biol; 1998; 93():157-67. PubMed ID: 9664534
    [No Abstract]   [Full Text] [Related]  

  • 46. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism.
    Yu S; Shen G; Khor TO; Kim JH; Kong AN
    Mol Cancer Ther; 2008 Sep; 7(9):2609-20. PubMed ID: 18790744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retinal G-substrate, potential downstream component of NO/cGMP/PKG pathway, is located in subtype of retinal ganglion cells and amacrine cells with protein phosphatases.
    Nakazawa T; Endo S; Shimura M; Kondo M; Ueno S; Tamai M
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):58-68. PubMed ID: 15857669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phy tunes: phosphorylation status and phytochrome-mediated signaling.
    Rubio V; Deng XW
    Cell; 2005 Feb; 120(3):290-2. PubMed ID: 15707886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-Proteasome Pathway.
    Mitula F; Tajdel M; Cieśla A; Kasprowicz-Maluśki A; Kulik A; Babula-Skowrońska D; Michalak M; Dobrowolska G; Sadowski J; Ludwików A
    Plant Cell Physiol; 2015 Dec; 56(12):2351-67. PubMed ID: 26443375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cardiomyocyte apoptosis triggered by RAFTK/pyk2 via Src kinase is antagonized by paxillin.
    Melendez J; Turner C; Avraham H; Steinberg SF; Schaefer E; Sussman MA
    J Biol Chem; 2004 Dec; 279(51):53516-23. PubMed ID: 15322113
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein aspartate phosphatases control the output of two-component signal transduction systems.
    Perego M; Hoch JA
    Trends Genet; 1996 Mar; 12(3):97-101. PubMed ID: 8868347
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substrate-dependent control of MAPK phosphorylation in vivo.
    Kim Y; Paroush Z; Nairz K; Hafen E; Jiménez G; Shvartsman SY
    Mol Syst Biol; 2011 Feb; 7():467. PubMed ID: 21283143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of myosin-bound protein phosphatase by insulin in vascular smooth muscle cells: evaluation of the role of Rho kinase and phosphatidylinositol-3-kinase-dependent signaling pathways.
    Begum N; Duddy N; Sandu O; Reinzie J; Ragolia L
    Mol Endocrinol; 2000 Sep; 14(9):1365-76. PubMed ID: 10976915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential association and localization of myosin phosphatase subunits during agonist-induced signal transduction in smooth muscle.
    Shin HM; Je HD; Gallant C; Tao TC; Hartshorne DJ; Ito M; Morgan KG
    Circ Res; 2002 Mar; 90(5):546-53. PubMed ID: 11909818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling.
    Lin YW; Yang JL
    J Biol Chem; 2006 Jan; 281(2):915-26. PubMed ID: 16286470
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Feedback control of MKP-1 expression by p38.
    Hu JH; Chen T; Zhuang ZH; Kong L; Yu MC; Liu Y; Zang JW; Ge BX
    Cell Signal; 2007 Feb; 19(2):393-400. PubMed ID: 16978838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways.
    Takekawa M; Maeda T; Saito H
    EMBO J; 1998 Aug; 17(16):4744-52. PubMed ID: 9707433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Competition between superoxide and hydrogen peroxide signaling in heterolytic enzymatic processes.
    Afanas'ev IB
    Med Hypotheses; 2006; 66(6):1125-8. PubMed ID: 16500034
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The potential for signal integration and processing in interacting MAP kinase cascades.
    Schwacke JH; Voit EO
    J Theor Biol; 2007 Jun; 246(4):604-20. PubMed ID: 17337011
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The multi-functional eyes absent proteins.
    Hegde RS; Roychoudhury K; Pandey RN
    Crit Rev Biochem Mol Biol; 2020 Aug; 55(4):372-385. PubMed ID: 32727223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.