These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22848404)

  • 1. Prediction of carbohydrate binding sites on protein surfaces with 3-dimensional probability density distributions of interacting atoms.
    Tsai KC; Jian JW; Yang EW; Hsu PC; Peng HP; Chen CT; Chen JB; Chang JY; Hsu WL; Yang AS
    PLoS One; 2012; 7(7):e40846. PubMed ID: 22848404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces.
    Mahalingam R; Peng HP; Yang AS
    J Theor Biol; 2014 Feb; 343():154-61. PubMed ID: 24211525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.
    Chen CT; Peng HP; Jian JW; Tsai KC; Chang JY; Yang EW; Chen JB; Ho SY; Hsu WL; Yang AS
    PLoS One; 2012; 7(6):e37706. PubMed ID: 22701576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms.
    Jian JW; Elumalai P; Pitti T; Wu CY; Tsai KC; Chang JY; Peng HP; Yang AS
    PLoS One; 2016; 11(8):e0160315. PubMed ID: 27513851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms.
    Mahalingam R; Peng HP; Yang AS
    Biophys Chem; 2014 Aug; 192():10-9. PubMed ID: 24934883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and prediction of carbohydrate binding sites.
    Taroni C; Jones S; Thornton JM
    Protein Eng; 2000 Feb; 13(2):89-98. PubMed ID: 10708647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network.
    Malik A; Ahmad S
    BMC Struct Biol; 2007 Jan; 7():1. PubMed ID: 17201922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-Based Prediction of Protein-Carbohydrate Binding Sites Using Support Vector Machines.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    J Chem Inf Model; 2016 Oct; 56(10):2115-2122. PubMed ID: 27623166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of GTP interacting residues, dipeptides and tripeptides in a protein from its evolutionary information.
    Chauhan JS; Mishra NK; Raghava GP
    BMC Bioinformatics; 2010 Jun; 11():301. PubMed ID: 20525281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PRINTR: prediction of RNA binding sites in proteins using SVM and profiles.
    Wang Y; Xue Z; Shen G; Xu J
    Amino Acids; 2008 Aug; 35(2):295-302. PubMed ID: 18235992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An empirical approach for structure-based prediction of carbohydrate-binding sites on proteins.
    Shionyu-Mitsuyama C; Shirai T; Ishida H; Yamane T
    Protein Eng; 2003 Jul; 16(7):467-78. PubMed ID: 12915724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites.
    Mishra SK; Kandoi G; Jernigan RL
    Proteins; 2019 Oct; 87(10):850-868. PubMed ID: 31141211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3DLigandSite: structure-based prediction of protein-ligand binding sites.
    McGreig JE; Uri H; Antczak M; Sternberg MJE; Michaelis M; Wass MN
    Nucleic Acids Res; 2022 Jul; 50(W1):W13-W20. PubMed ID: 35412635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of turn types in protein structure by machine-learning classifiers.
    Meissner M; Koch O; Klebe G; Schneider G
    Proteins; 2009 Feb; 74(2):344-52. PubMed ID: 18618702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of hot spots in protein interfaces using extreme learning machines with the information of spatial neighbour residues.
    Wang L; Zhang W; Gao Q; Xiong C
    IET Syst Biol; 2014 Aug; 8(4):184-90. PubMed ID: 25075532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.