BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22848427)

  • 1. IsoWeb: a bayesian isotope mixing model for diet analysis of the whole food web.
    Kadoya T; Osada Y; Takimoto G
    PLoS One; 2012; 7(7):e41057. PubMed ID: 22848427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foraging biology predicts food web complexity.
    Beckerman AP; Petchey OL; Warren PH
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13745-9. PubMed ID: 16954193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Land use alters trophic redundancy and resource flow through stream food webs.
    Price EL; Sertić Perić M; Romero GQ; Kratina P
    J Anim Ecol; 2019 May; 88(5):677-689. PubMed ID: 30712255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating temporally dynamic baselines in isotopic mixing models.
    Woodland RJ; Rodríguez MA; Magnan P; Glémet H; Cabana G
    Ecology; 2012 Jan; 93(1):131-44. PubMed ID: 22486094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size compartmentalization of energy channeling in terrestrial belowground food webs.
    Potapov AM; Rozanova OL; Semenina EE; Leonov VD; Belyakova OI; Bogatyreva VY; Degtyarev MI; Esaulov AS; Korotkevich AY; Kudrin AA; Malysheva EA; Mazei YA; Tsurikov SM; Zuev AG; Tiunov AV
    Ecology; 2021 Aug; 102(8):e03421. PubMed ID: 34086977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EcoDiet: A hierarchical Bayesian model to combine stomach, biotracer, and literature data into diet matrix estimation.
    Hernvann PY; Gascuel D; Kopp D; Robert M; Rivot E
    Ecol Appl; 2022 Mar; 32(2):e2521. PubMed ID: 34918402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual diet variability shapes the architecture of Antarctic benthic food webs.
    Sporta Caputi S; Kabala JP; Rossi L; Careddu G; Calizza E; Ventura M; Costantini ML
    Sci Rep; 2024 May; 14(1):12333. PubMed ID: 38811641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of food web recovery following restoration using resource niche metrics.
    James WR; Lesser JS; Litvin SY; Nelson JA
    Sci Total Environ; 2020 Apr; 711():134801. PubMed ID: 31822405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact.
    de Visser SN; Freymann BP; Olff H
    J Anim Ecol; 2011 Mar; 80(2):484-94. PubMed ID: 21155772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures.
    Yen JD; Cabral RB; Cantor M; Hatton I; Kortsch S; Patrício J; Yamamichi M
    J Anim Ecol; 2016 Mar; 85(2):537-47. PubMed ID: 26749320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compilation and network analyses of cambrian food webs.
    Dunne JA; Williams RJ; Martinez ND; Wood RA; Erwin DH
    PLoS Biol; 2008 Apr; 6(4):e102. PubMed ID: 18447582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian stable isotope mixing models effectively characterize the diet of an Arctic raptor.
    Johnson DL; Henderson MT; Anderson DL; Booms TL; Williams CT
    J Anim Ecol; 2020 Dec; 89(12):2972-2985. PubMed ID: 33020919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EStimating Contaminants tRansfers Over Complex food webs (ESCROC): An innovative Bayesian method for estimating POP's biomagnification in aquatic food webs.
    Ballutaud M; Drouineau H; Carassou L; Munoz G; Chevillot X; Labadie P; Budzinski H; Lobry J
    Sci Total Environ; 2019 Mar; 658():638-649. PubMed ID: 30580218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global synthesis suggests that food web connectance correlates to invasion resistance.
    Smith-Ramesh LM; Moore AC; Schmitz OJ
    Glob Chang Biol; 2017 Feb; 23(2):465-473. PubMed ID: 27507321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Including source uncertainty and prior information in the analysis of stable isotope mixing models.
    Ward EJ; Semmens BX; Schindler DE
    Environ Sci Technol; 2010 Jun; 44(12):4645-50. PubMed ID: 20496928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple stressors shape invertebrate assemblages and reduce their trophic niche: A case study in a regulated stream.
    Dolédec S; Simon L; Blemus J; Rigal A; Robin J; Mermillod-Blondin F
    Sci Total Environ; 2021 Jun; 773():145061. PubMed ID: 33940713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can stable isotope ratios provide for community-wide measures of trophic structure?
    Layman CA; Arrington DA; Montaña CG; Post DM
    Ecology; 2007 Jan; 88(1):42-8. PubMed ID: 17489452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research progress on food sources and food web structure of wetlands based on stable isotopes].
    Chen ZY; Wu HT; Wang YB; Lyu XG
    Ying Yong Sheng Tai Xue Bao; 2017 Jul; 28(7):2389-2398. PubMed ID: 29741074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of trophic niche compression: Evidence from landscape disturbance.
    Burdon FJ; McIntosh AR; Harding JS
    J Anim Ecol; 2020 Mar; 89(3):730-744. PubMed ID: 31691281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.
    Arimitsu ML; Hobson KA; Webber DN; Piatt JF; Hood EW; Fellman JB
    Glob Chang Biol; 2018 Jan; 24(1):387-398. PubMed ID: 28833910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.