These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22848464)

  • 21. Frequency-specific, location-nonspecific adaptation of interaural time difference sensitivity.
    Brown AD; Kuznetsova MS; Spain WJ; Stecker GC
    Hear Res; 2012 Sep; 291(1-2):52-6. PubMed ID: 22732693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping lateralization of click trains in younger and older populations.
    Babkoff H; Muchnik C; Ben-David N; Furst M; Even-Zohar S; Hildesheimer M
    Hear Res; 2002 Mar; 165(1-2):117-27. PubMed ID: 12031521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of envelope shape on the lateralization of amplitude-modulated, low-frequency sound.
    Haywood NR; Undurraga JA; McAlpine D
    J Acoust Soc Am; 2021 May; 149(5):3133. PubMed ID: 34241105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization.
    Nishino E; Yamada R; Kuba H; Hioki H; Furuta T; Kaneko T; Ohmori H
    J Neurosci; 2008 Jul; 28(28):7153-64. PubMed ID: 18614685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulus-frequency-dependent dominance of sound localization cues across the cochleotopic map of the inferior colliculus.
    Dorkoski R; Hancock KE; Whaley GA; Wohl TR; Stroud NC; Day ML
    J Neurophysiol; 2020 May; 123(5):1791-1807. PubMed ID: 32186439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Internally coupled middle ears enhance the range of interaural time differences heard by the chicken.
    Köppl C
    J Exp Biol; 2019 Jun; 222(Pt 12):. PubMed ID: 31138639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The contribution of high frequencies to human brain activity underlying horizontal localization of natural spatial sounds.
    Leino S; May PJ; Alku P; Liikkanen LA; Tiitinen H
    BMC Neurosci; 2007 Sep; 8():78. PubMed ID: 17897443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference.
    Small SA; Ishida IM; Stapells DR
    Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sound-localization experiments with barn owls in virtual space: influence of interaural time difference on head-turning behavior.
    Poganiatz I; Nelken I; Wagner H
    J Assoc Res Otolaryngol; 2001 Mar; 2(1):1-21. PubMed ID: 11545146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring binaural hearing in gerbils (Meriones unguiculatus) using virtual headphones.
    Tolnai S; Beutelmann R; Klump GM
    PLoS One; 2017; 12(4):e0175142. PubMed ID: 28394906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The measurement of the lateralization of narrow bands of noise using an acoustic pointing paradigm: the effect of sound-pressure level.
    Simon HJ; Collins CC; Jampolsky A; Morledge DE; Yu J
    J Acoust Soc Am; 1994 Mar; 95(3):1534-47. PubMed ID: 8176057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human auditory cortical mechanisms of sound lateralization: II. Interaural time differences at sound onset.
    McEvoy L; Hari R; Imada T; Sams M
    Hear Res; 1993 May; 67(1-2):98-109. PubMed ID: 8340283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrimination of interaural differences of level as a function of frequency.
    Yost WA; Dye RH
    J Acoust Soc Am; 1988 May; 83(5):1846-51. PubMed ID: 3403800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid adaptation to auditory-visual spatial disparity.
    Lewald J
    Learn Mem; 2002; 9(5):268-78. PubMed ID: 12359836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional modelling of interaural time difference discrimination in acoustical and electrical hearing.
    Prokopiou A; Moncada-Torres A; Wouters J; Francart T
    J Neural Eng; 2017 Aug; 14(4):046021. PubMed ID: 28462911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the variation of interaural time differences with frequency.
    Benichoux V; Rébillat M; Brette R
    J Acoust Soc Am; 2016 Apr; 139(4):1810. PubMed ID: 27106329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing interaural-delay-based extents of laterality at high frequencies by using "transposed stimuli".
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 2003 Jun; 113(6):3335-47. PubMed ID: 12822805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A physiologically based model of interaural time difference discrimination.
    Hancock KE; Delgutte B
    J Neurosci; 2004 Aug; 24(32):7110-7. PubMed ID: 15306644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.