BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22848574)

  • 1. Viral reverse transcriptases show selective high affinity binding to DNA-DNA primer-templates that resemble the polypurine tract.
    Nair GR; Dash C; Le Grice SF; DeStefano JJ
    PLoS One; 2012; 7(7):e41712. PubMed ID: 22848574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between plus strand DNA synthesis removal of downstream segments of RNA by human immunodeficiency virus, murine leukemia virus and avian myeloblastoma virus reverse transcriptases.
    Fuentes GM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1996 May; 24(9):1719-26. PubMed ID: 8649991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of HIV-1 and avian myeloblastosis virus reverse transcriptase fidelity on RNA and DNA templates.
    Yu H; Goodman MF
    J Biol Chem; 1992 May; 267(15):10888-96. PubMed ID: 1375233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonpolar thymine isosteres in the Ty3 polypurine tract DNA template modulate processing and provide a model for its recognition by Ty3 reverse transcriptase.
    Lener D; Kvaratskhelia M; Le Grice SF
    J Biol Chem; 2003 Jul; 278(29):26526-32. PubMed ID: 12730227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypurine tract primer generation and utilization by Moloney murine leukemia virus reverse transcriptase.
    Schultz SJ; Zhang M; Kelleher CD; Champoux JJ
    J Biol Chem; 1999 Dec; 274(49):34547-55. PubMed ID: 10574917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translesion synthesis by AMV, HIV, and MMLVreverse transcriptases using RNA templates containing inosine, guanosine, and their 8-oxo-7,8-dihydropurine derivatives.
    Glennon MM; Skinner A; Krutsinger M; Resendiz MJE
    PLoS One; 2020; 15(8):e0235102. PubMed ID: 32857764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled.
    DeStefano JJ; Buiser RG; Mallaber LM; Myers TW; Bambara RA; Fay PJ
    J Biol Chem; 1991 Apr; 266(12):7423-31. PubMed ID: 1708386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defects in primer-template binding, processive DNA synthesis, and RNase H activity associated with chimeric reverse transcriptases having the murine leukemia virus polymerase domain joined to Escherichia coli RNase H.
    Guo J; Wu W; Yuan ZY; Post K; Crouch RJ; Levin JG
    Biochemistry; 1995 Apr; 34(15):5018-29. PubMed ID: 7536033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the thermal stabilities of reverse transcriptases from avian myeloblastosis virus and Moloney murine leukaemia virus.
    Yasukawa K; Nemoto D; Inouye K
    J Biochem; 2008 Feb; 143(2):261-8. PubMed ID: 18006517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse transcriptase.
    Fuentes GM; Rodríguez-Rodríguez L; Fay PJ; Bambara RA
    J Biol Chem; 1995 Nov; 270(47):28169-76. PubMed ID: 7499308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition.
    Lim D; Orlova M; Goff SP
    J Virol; 2002 Aug; 76(16):8360-73. PubMed ID: 12134040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition mechanisms of HIV-1, Mo-MuLV and AMV reverse transcriptases by Kelletinin A from Buccinulum corneum.
    Orlando P; Strazzullo G; Carretta F; De Falco M; Grippo P
    Experientia; 1996 Aug; 52(8):812-7. PubMed ID: 8774754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of plus-strand primer selection, removal, and reutilization by retroviral reverse transcriptases.
    Schultz SJ; Zhang M; Kelleher CD; Champoux JJ
    J Biol Chem; 2000 Oct; 275(41):32299-309. PubMed ID: 10913435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases.
    DeStefano JJ; Mallaber LM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1994 Sep; 22(18):3793-800. PubMed ID: 7524028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA degradation and primer selection by Moloney murine leukemia virus reverse transcriptase contribute to the accuracy of plus strand initiation.
    Kelleher CD; Champoux JJ
    J Biol Chem; 2000 Apr; 275(17):13061-70. PubMed ID: 10777611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro.
    Roberts JD; Preston BD; Johnston LA; Soni A; Loeb LA; Kunkel TA
    Mol Cell Biol; 1989 Feb; 9(2):469-76. PubMed ID: 2469002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNase H activity of reverse transcriptases on substrates derived from the 5' end of retroviral genome.
    Ben-Artzi H; Zeelon E; Amit B; Wortzel A; Gorecki M; Panet A
    J Biol Chem; 1993 Aug; 268(22):16465-71. PubMed ID: 7688365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-dependent DNA polymerases.
    Tzertzinis G; Tabor S; Nichols NM
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.7. PubMed ID: 18972389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNA(Lys3)-primer excision.
    Furfine ES; Reardon JE
    Biochemistry; 1991 Jul; 30(29):7041-6. PubMed ID: 1713059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse transcriptase and substrate dependence of the RNA hypermutagenesis reaction.
    Martínez MA; Sala M; Vartanian JP; Wain-Hobson S
    Nucleic Acids Res; 1995 Jul; 23(14):2573-8. PubMed ID: 7544458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.