These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 22848622)
41. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Thompson AR; Doelling JH; Suttangkakul A; Vierstra RD Plant Physiol; 2005 Aug; 138(4):2097-110. PubMed ID: 16040659 [TBL] [Abstract][Full Text] [Related]
42. Oxidative stress and metabolic process responses of Chlorella pyrenoidosa to nanoplastic exposure: Insights from integrated analysis of transcriptomics and metabolomics. Yang W; Liu D; Gao P; Wu Q; Li Z; Li S; Zhu L Environ Pollut; 2024 Sep; 357():124466. PubMed ID: 38944181 [TBL] [Abstract][Full Text] [Related]
43. Infrared spectroscopy as a tool to monitor interactions between nanoplastics and microalgae. Déniel M; Lagarde F; Caruso A; Errien N Anal Bioanal Chem; 2020 Jul; 412(18):4413-4422. PubMed ID: 32382969 [TBL] [Abstract][Full Text] [Related]
44. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934 [TBL] [Abstract][Full Text] [Related]
45. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation. Li Y; Mu J; Chen D; Han F; Xu H; Kong F; Xie F; Feng B Bioresour Technol; 2013 Nov; 148():283-92. PubMed ID: 24055971 [TBL] [Abstract][Full Text] [Related]
46. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. Yamaguchi M; Noda NN; Nakatogawa H; Kumeta H; Ohsumi Y; Inagaki F J Biol Chem; 2010 Sep; 285(38):29599-607. PubMed ID: 20615880 [TBL] [Abstract][Full Text] [Related]
47. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Yoshimoto K; Hanaoka H; Sato S; Kato T; Tabata S; Noda T; Ohsumi Y Plant Cell; 2004 Nov; 16(11):2967-83. PubMed ID: 15494556 [TBL] [Abstract][Full Text] [Related]
48. CO Cecchin M; Paloschi M; Busnardo G; Cazzaniga S; Cuine S; Li-Beisson Y; Wobbe L; Ballottari M Plant Cell Environ; 2021 Sep; 44(9):2987-3001. PubMed ID: 33931891 [TBL] [Abstract][Full Text] [Related]
49. Analysis of bZIP Transcription Factor Family and Their Expressions under Salt Stress in Ji C; Mao X; Hao J; Wang X; Xue J; Cui H; Li R Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30227676 [TBL] [Abstract][Full Text] [Related]
51. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Nakatogawa H Essays Biochem; 2013; 55():39-50. PubMed ID: 24070470 [TBL] [Abstract][Full Text] [Related]
52. Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1 in gastric cancer. Cao QH; Liu F; Yang ZL; Fu XH; Yang ZH; Liu Q; Wang L; Wan XB; Fan XJ Am J Transl Res; 2016; 8(9):3831-3847. PubMed ID: 27725863 [TBL] [Abstract][Full Text] [Related]
53. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. Scherholz ML; Curtis WR BMC Biotechnol; 2013 May; 13():39. PubMed ID: 23651806 [TBL] [Abstract][Full Text] [Related]
54. The role of diatom glucose-6-phosphate dehydrogenase on lipogenic NADPH supply in green microalgae through plastidial oxidative pentose phosphate pathway. Xue J; Chen TT; Zheng JW; Balamurugan S; Cai JX; Liu YH; Yang WD; Liu JS; Li HY Appl Microbiol Biotechnol; 2018 Dec; 102(24):10803-10815. PubMed ID: 30349933 [TBL] [Abstract][Full Text] [Related]
55. Genome-wide survey and expression analysis of Chlamydomonas reinhardtii U-box E3 ubiquitin ligases (CrPUBs) reveal a functional lipid metabolism module. Luo Q; Li Y; Wang W; Fei X; Deng X PLoS One; 2015; 10(3):e0122600. PubMed ID: 25822994 [TBL] [Abstract][Full Text] [Related]
56. Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Pérez-Pérez ME; Florencio FJ; Crespo JL Plant Physiol; 2010 Apr; 152(4):1874-88. PubMed ID: 20107021 [TBL] [Abstract][Full Text] [Related]
57. Systematic prediction of cis-regulatory elements in the Chlamydomonas reinhardtii genome using comparative genomics. Ding J; Li X; Hu H Plant Physiol; 2012 Oct; 160(2):613-23. PubMed ID: 22915576 [TBL] [Abstract][Full Text] [Related]
58. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein. Misra N; Panda PK OMICS; 2013 Apr; 17(4):173-86. PubMed ID: 23496307 [TBL] [Abstract][Full Text] [Related]
59. The Roles of Cullins E3 Ubiquitin Ligases in the Lipid Biosynthesis of the Green Microalgae Luo Q; Zou X; Wang C; Li Y; Hu Z Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946721 [TBL] [Abstract][Full Text] [Related]
60. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Crespo JL; Díaz-Troya S; Florencio FJ Plant Physiol; 2005 Dec; 139(4):1736-49. PubMed ID: 16299168 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]