BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22848638)

  • 21. An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model.
    Uchiyama M; Shimizu A; Masuda Y; Nagasaka S; Fukuda Y; Takahashi H
    Mol Vis; 2013; 19():2135-50. PubMed ID: 24194635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapamycin inhibits corneal inflammatory response and neovascularization in a mouse model of corneal alkali burn.
    Li J; Han J; Shi Y; Liu M
    Exp Eye Res; 2023 Aug; 233():109539. PubMed ID: 37315833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist.
    Lu P; Li L; Liu G; Zhang X; Mukaida N
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4761-8. PubMed ID: 19458323
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Estrella-Mendoza MF; Jiménez-Gómez F; López-Ornelas A; Pérez-Gutiérrez RM; Flores-Estrada J
    Nutrients; 2019 May; 11(5):. PubMed ID: 31137826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation.
    Shin YJ; Hyon JY; Choi WS; Yi K; Chung ES; Chung TY; Wee WR
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4452-8. PubMed ID: 23716625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dexamethasone and MicroRNA-204 Inhibit Corneal Neovascularization.
    Zhang X; Wang G; Wang Q; Jiang R
    Mil Med; 2024 Jan; 189(1-2):374-378. PubMed ID: 36043264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury.
    Yamada J; Dana MR; Sotozono C; Kinoshita S
    Exp Eye Res; 2003 Feb; 76(2):161-7. PubMed ID: 12565803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NK1 receptor antagonists as a new treatment for corneal neovascularization.
    Bignami F; Giacomini C; Lorusso A; Aramini A; Rama P; Ferrari G
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6783-94. PubMed ID: 25228541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkali burn to the eye: protection using TNF-α inhibition.
    Cade F; Paschalis EI; Regatieri CV; Vavvas DG; Dana R; Dohlman CH
    Cornea; 2014 Apr; 33(4):382-9. PubMed ID: 24488127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bovine lactoferrin promotes corneal wound healing and suppresses IL-1 expression in alkali wounded mouse cornea.
    Pattamatta U; Willcox M; Stapleton F; Garrett Q
    Curr Eye Res; 2013 Nov; 38(11):1110-7. PubMed ID: 23898919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression of alkali burn-induced corneal neovascularization by dendritic cell vaccination targeting VEGF receptor 2.
    Mochimaru H; Usui T; Yaguchi T; Nagahama Y; Hasegawa G; Usui Y; Shimmura S; Tsubota K; Amano S; Kawakami Y; Ishida S
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2172-7. PubMed ID: 18263815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of topical chondrocyte-derived extracellular matrix treatment on corneal wound healing, following an alkali burn injury.
    Yang JW; Lee SM; Oh KH; Park SG; Choi IW; Seo SK
    Mol Med Rep; 2015 Jan; 11(1):461-7. PubMed ID: 25333196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization.
    Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y
    Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The long-term effect of tacrolimus on alkali burn-induced corneal neovascularization and inflammation surpasses that of anti-vascular endothelial growth factor.
    Chen L; Zhong J; Li S; Li W; Wang B; Deng Y; Yuan J
    Drug Des Devel Ther; 2018; 12():2959-2969. PubMed ID: 30254425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: an overview of two common animal models of corneal neovascularization.
    Giacomini C; Ferrari G; Bignami F; Rama P
    Exp Eye Res; 2014 Apr; 121():1-4. PubMed ID: 24560796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protective Effect of TLR4 Ablation against Corneal Neovascularization following Chemical Burn in a Mouse Model.
    Friedman M; Azrad-Lebovitz T; Morzaev D; Zahavi A; Marianayagam NJ; Nicholson JD; Brookman M; Michowiz S; Hochhauser E; Goldenberg-Cohen N
    Curr Eye Res; 2019 May; 44(5):505-513. PubMed ID: 30595046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Features of corneal neovascularization and lymphangiogenesis induced by different etiological factors in mice.
    Shi W; Ming C; Liu J; Wang T; Gao H
    Graefes Arch Clin Exp Ophthalmol; 2011 Jan; 249(1):55-67. PubMed ID: 20640436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LRG1 facilitates corneal fibrotic response by inducing neutrophil chemotaxis via Stat3 signaling in alkali-burned mouse corneas.
    Yu B; Yang L; Song S; Li W; Wang H; Cheng J
    Am J Physiol Cell Physiol; 2021 Sep; 321(3):C415-C428. PubMed ID: 34260299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forkhead Domain Inhibitor-6 Suppresses Corneal Neovascularization and Subsequent Fibrosis After Alkali Burn in Rats.
    Lan C; Liu G; Huang L; Wang X; Tan J; Wang Y; Fan N; Zhu Y; Yu M; Liu X
    Invest Ophthalmol Vis Sci; 2022 Apr; 63(4):14. PubMed ID: 35446346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Therapeutic effects of three human-derived materials in a mouse corneal alkali burn model.
    Han KE; Park MH; Kong KH; Choi E; Choi KR; Jun RM
    Cutan Ocul Toxicol; 2019 Dec; 38(4):315-321. PubMed ID: 30741024
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.