BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22848767)

  • 1. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants.
    Setzer WN; Ogungbe IV
    PLoS Negl Trop Dis; 2012; 6(7):e1727. PubMed ID: 22848767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sesquiterpene Lactones with Dual Inhibitory Activity against the
    Possart K; Herrmann FC; Jose J; Costi MP; Schmidt TJ
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Novel Potential Inhibitors of Pteridine Reductase 1 in
    Kimuda MP; Laming D; Hoppe HC; Tastan Bishop Ö
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30609681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in-silico investigation of anti-Chagas phytochemicals.
    McCulley SF; Setzer WN
    Curr Clin Pharmacol; 2014; 9(3):205-57. PubMed ID: 23173969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei.
    Rojas Vargas JA; López AG; Pérez Y; Cos P; Froeyen M
    Parasitol Res; 2019 May; 118(5):1533-1548. PubMed ID: 30903349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-substituted noscapine derivatives as new antiprotozoal agents: Synthesis, antiparasitic activity and molecular docking study.
    Babanezhad Harikandei K; Salehi P; Ebrahimi SN; Bararjanian M; Kaiser M; Khavasi HR; Al-Harrasi A
    Bioorg Chem; 2019 Oct; 91():103116. PubMed ID: 31377384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavonoid-derived Privileged Scaffolds in anti-Trypanosoma brucei Drug Discovery.
    Boniface PK; Elizabeth FI
    Curr Drug Targets; 2019; 20(12):1295-1314. PubMed ID: 31215385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets.
    Ogungbe IV; Erwin WR; Setzer WN
    J Mol Graph Model; 2014 Mar; 48():105-17. PubMed ID: 24463105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro antileishmanial and antitrypanosomal activities of five medicinal plants from Burkina Faso.
    Sawadogo WR; Le Douaron G; Maciuk A; Bories C; Loiseau PM; Figadère B; Guissou IP; Nacoulma OG
    Parasitol Res; 2012 May; 110(5):1779-83. PubMed ID: 22037827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacophore Mapping, In Silico Screening and Molecular Docking to Identify Selective Trypanosoma brucei Pteridine Reductase Inhibitors.
    Dube D; Sharma S; Singh TP; Kaur P
    Mol Inform; 2014 Feb; 33(2):124-34. PubMed ID: 27485569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution crystal structure of Trypanosoma brucei pteridine reductase 1 in complex with an innovative tricyclic-based inhibitor.
    Landi G; Linciano P; Tassone G; Costi MP; Mangani S; Pozzi C
    Acta Crystallogr D Struct Biol; 2020 Jun; 76(Pt 6):558-564. PubMed ID: 32496217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico and In Vitro Search for Dual Inhibitors of the
    Possart K; Herrmann FC; Jose J; Schmidt TJ
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.
    Zimmermann S; Oufir M; Leroux A; Krauth-Siegel RL; Becker K; Kaiser M; Brun R; Hamburger M; Adams M
    Bioorg Med Chem; 2013 Nov; 21(22):7202-9. PubMed ID: 24080104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis and antitrypanosomal activity of heteroaryl-based 1,2,4-triazole and 1,3,4-oxadiazole derivatives.
    Shaykoon MS; Marzouk AA; Soltan OM; Wanas AS; Radwan MM; Gouda AM; Youssif BGM; Abdel-Aziz M
    Bioorg Chem; 2020 Jul; 100():103933. PubMed ID: 32446119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of
    Tassone G; Landi G; Linciano P; Francesconi V; Tonelli M; Tagliazucchi L; Costi MP; Mangani S; Pozzi C
    Pharmaceuticals (Basel); 2021 Jun; 14(7):. PubMed ID: 34209148
    [No Abstract]   [Full Text] [Related]  

  • 16. An
    Adams L; Obiri-Yeboah D; Afiadenyo M; Hamidu S; Aning A; Ehun E; Shiels K; Joshi A; Mamfe Sakyimah M; Asamoah Kusi K; Ayi I; Mckeon Bennett M; Moane S
    Heliyon; 2024 Mar; 10(6):e28025. PubMed ID: 38545221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antitrypanosomal activity of some medicinal plants from Nigerian ethnomedicine.
    Abiodun OO; Gbotosho GO; Ajaiyeoba EO; Brun R; Oduola AM
    Parasitol Res; 2012 Feb; 110(2):521-6. PubMed ID: 21789586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening North American plant extracts in vitro against Trypanosoma brucei for discovery of new antitrypanosomal drug leads.
    Jain S; Jacob M; Walker L; Tekwani B
    BMC Complement Altern Med; 2016 May; 16():131. PubMed ID: 27193901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Flavanones as Scaffolds for the Development of New Treatments against Malaria and African and American Trypanosomiases.
    Boniface PK; Ferreira EI; Fabrice FB
    Mini Rev Med Chem; 2023; 23(14):1479-1498. PubMed ID: 36582061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets.
    Ogungbe IV; Setzer WN
    Molecules; 2009 Apr; 14(4):1513-36. PubMed ID: 19384282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.