These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22848782)

  • 41. H(2)O(2) produced by viridans group streptococci may contribute to inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns.
    Uehara Y; Kikuchi K; Nakamura T; Nakama H; Agematsu K; Kawakami Y; Maruchi N; Totsuka K
    Clin Infect Dis; 2001 May; 32(10):1408-13. PubMed ID: 11317240
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluorescence Tools Adapted for Real-Time Monitoring of the Behaviors of
    Shields RC; Kaspar JR; Lee K; Underhill SAM; Burne RA
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31101614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of environmental conditions on hydrogen peroxide formation by Streptococcus gordonii.
    Barnard JP; Stinson MW
    Infect Immun; 1999 Dec; 67(12):6558-64. PubMed ID: 10569775
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome.
    Redanz S; Cheng X; Giacaman RA; Pfeifer CS; Merritt J; Kreth J
    Mol Oral Microbiol; 2018 Oct; 33(5):337-352. PubMed ID: 29897662
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development.
    Katharios-Lanwermeyer S; Xi C; Jakubovics NS; Rickard AH
    Biofouling; 2014; 30(10):1235-51. PubMed ID: 25421394
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating the intrinsic capacity of oral bacteria to produce hydrogen peroxide (H
    Verspecht T; Ghesquière J; Bernaerts K; Boon N; Teughels W
    J Microbiol Methods; 2021 Mar; 182():106170. PubMed ID: 33600877
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oral biofilm elimination by combining iron-based nanozymes and hydrogen peroxide-producing bacteria.
    Wang Y; Shen X; Ma S; Guo Q; Zhang W; Cheng L; Ding L; Xu Z; Jiang J; Gao L
    Biomater Sci; 2020 May; 8(9):2447-2458. PubMed ID: 32096497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of the capacity of oral streptococci to produce hydrogen peroxide.
    García-Mendoza A; Liébana J; Castillo AM; de la Higuera A; Piédrola G
    J Med Microbiol; 1993 Dec; 39(6):434-9. PubMed ID: 8246261
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Function of the pyruvate oxidase-lactate oxidase cascade in interspecies competition between Streptococcus oligofermentans and Streptococcus mutans.
    Liu L; Tong H; Dong X
    Appl Environ Microbiol; 2012 Apr; 78(7):2120-7. PubMed ID: 22287002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of lactoferrin on oral bacterial attachment.
    Arslan SY; Leung KP; Wu CD
    Oral Microbiol Immunol; 2009 Oct; 24(5):411-6. PubMed ID: 19702956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SpxA1 involved in hydrogen peroxide production, stress tolerance and endocarditis virulence in Streptococcus sanguinis.
    Chen L; Ge X; Wang X; Patel JR; Xu P
    PLoS One; 2012; 7(6):e40034. PubMed ID: 22768210
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reactive oxygen species in the signaling and adaptation of multicellular microbial communities.
    Cáp M; Váchová L; Palková Z
    Oxid Med Cell Longev; 2012; 2012():976753. PubMed ID: 22829965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii.
    Montelongo-Jauregui D; Saville SP; Lopez-Ribot JL
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213561
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intermicrobial Interactions as a Driver for Community Composition and Stratification of Oral Biofilms.
    Jakubovics NS
    J Mol Biol; 2015 Nov; 427(23):3662-75. PubMed ID: 26519790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biofilm formation by Porphyromonas gingivalis and Streptococcus gordonii.
    Cook GS; Costerton JW; Lamont RJ
    J Periodontal Res; 1998 Aug; 33(6):323-7. PubMed ID: 9777582
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oral mitis group streptococci: A silent majority in our oral cavity.
    Okahashi N; Nakata M; Kuwata H; Kawabata S
    Microbiol Immunol; 2022 Dec; 66(12):539-551. PubMed ID: 36114681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationship between the ability of oral streptococci to interact with platelet glycoprotein Ibalpha and with the salivary low-molecular-weight mucin, MG2.
    Plummer C; Douglas CW
    FEMS Immunol Med Microbiol; 2006 Dec; 48(3):390-9. PubMed ID: 17069618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro evaluation of a multispecies oral biofilm on different implant surfaces.
    Violant D; Galofré M; Nart J; Teles RP
    Biomed Mater; 2014 Jun; 9(3):035007. PubMed ID: 24770899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2.
    Fujishima K; Kawada-Matsuo M; Oogai Y; Tokuda M; Torii M; Komatsuzawa H
    Appl Environ Microbiol; 2013 Mar; 79(5):1436-43. PubMed ID: 23263955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlation of Streptococcus mutans and Streptococcus sanguinis colonization and ex vivo hydrogen peroxide production in carious lesion-free and high caries adults.
    Giacaman RA; Torres S; Gómez Y; Muñoz-Sandoval C; Kreth J
    Arch Oral Biol; 2015 Jan; 60(1):154-9. PubMed ID: 25455129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.