These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 22848830)

  • 1. Impact of oxidative stress in fetal programming.
    Thompson LP; Al-Hasan Y
    J Pregnancy; 2012; 2012():582748. PubMed ID: 22848830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart disease link to fetal hypoxia and oxidative stress.
    Giussani DA; Niu Y; Herrera EA; Richter HG; Camm EJ; Thakor AS; Kane AD; Hansell JA; Brain KL; Skeffington KL; Itani N; Wooding FB; Cross CM; Allison BJ
    Adv Exp Med Biol; 2014; 814():77-87. PubMed ID: 25015802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of fetal and neonatal environment on beta cell function and development of diabetes.
    Nielsen JH; Haase TN; Jaksch C; Nalla A; Søstrup B; Nalla AA; Larsen L; Rasmussen M; Dalgaard LT; Gaarn LW; Thams P; Kofod H; Billestrup N
    Acta Obstet Gynecol Scand; 2014 Nov; 93(11):1109-22. PubMed ID: 25225114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fetal origins of adult diabetes.
    Kanaka-Gantenbein C
    Ann N Y Acad Sci; 2010 Sep; 1205():99-105. PubMed ID: 20840260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental programming of offspring obesity, adipogenesis, and appetite.
    Ross MG; Desai M
    Clin Obstet Gynecol; 2013 Sep; 56(3):529-36. PubMed ID: 23751877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of early life stress on fetal metabolic programming of schizophrenia: A focus on epiphenomena underlying morbidity and early mortality.
    Garcia-Rizo C; Bitanihirwe BKY
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Jul; 101():109910. PubMed ID: 32142745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fetal programming of pulmonary vascular dysfunction in mice: role of epigenetic mechanisms.
    Rexhaj E; Bloch J; Jayet PY; Rimoldi SF; Dessen P; Mathieu C; Tolsa JF; Nicod P; Scherrer U; Sartori C
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H247-52. PubMed ID: 21536851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal alcohol programming of hypothalamic proopiomelanocortin system by epigenetic mechanisms and later life vulnerability to stress.
    Bekdash R; Zhang C; Sarkar D
    Alcohol Clin Exp Res; 2014 Sep; 38(9):2323-30. PubMed ID: 25069392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrauterine programming of physiological systems: causes and consequences.
    Fowden AL; Giussani DA; Forhead AJ
    Physiology (Bethesda); 2006 Feb; 21():29-37. PubMed ID: 16443820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The obstetric origins of health for a lifetime.
    Barker DJ; Thornburg KL
    Clin Obstet Gynecol; 2013 Sep; 56(3):511-9. PubMed ID: 23787713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic, nongenetic and epigenetic risk determinants in developmental programming of type 2 diabetes.
    Vaag A; Brøns C; Gillberg L; Hansen NS; Hjort L; Arora GP; Thomas N; Broholm C; Ribel-Madsen R; Grunnet LG
    Acta Obstet Gynecol Scand; 2014 Nov; 93(11):1099-108. PubMed ID: 25179736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism.
    Yates DT; Macko AR; Nearing M; Chen X; Rhoads RP; Limesand SW
    J Pregnancy; 2012; 2012():631038. PubMed ID: 22900186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of maternal glucocorticoid inducible kinase SGK1 in fetal programming of blood pressure in response to prenatal diet.
    Rexhepaj R; Boini KM; Huang DY; Amann K; Artunc F; Wang K; Brosens JJ; Kuhl D; Lang F
    Am J Physiol Regul Integr Comp Physiol; 2008 Jun; 294(6):R2008-13. PubMed ID: 18367651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intervention against hypertension in the next generation programmed by developmental hypoxia.
    Brain KL; Allison BJ; Niu Y; Cross CM; Itani N; Kane AD; Herrera EA; Skeffington KL; Botting KJ; Giussani DA
    PLoS Biol; 2019 Jan; 17(1):e2006552. PubMed ID: 30668572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fetal programming of cardiovascular disease: new causes and underlying mechanisms].
    Sartori C; Rexhaj E; Rimoldi SF; Allemann Y; Scherrer U
    Rev Med Suisse; 2012 Sep; 8(353):1716, 1718-24. PubMed ID: 23029985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Maternal nutrition: effects on offspring fertility and importance of the periconceptional period on long-term development].
    Chavatte-Palmer P; Al Gubory K; Picone O; Heyman Y
    Gynecol Obstet Fertil; 2008 Sep; 36(9):920-9. PubMed ID: 18693060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia.
    Spiroski AM; Niu Y; Nicholas LM; Austin-Williams S; Camm EJ; Sutherland MR; Ashmore TJ; Skeffington KL; Logan A; Ozanne SE; Murphy MP; Giussani DA
    FASEB J; 2021 May; 35(5):e21446. PubMed ID: 33788974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches.
    Jansson T; Powell TL
    Clin Sci (Lond); 2007 Jul; 113(1):1-13. PubMed ID: 17536998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preemptive Epigenetic Medicine Based on Fetal Programming.
    Kubota T
    Adv Exp Med Biol; 2018; 1012():85-95. PubMed ID: 29956197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia.
    Aljunaidy MM; Morton JS; Kirschenman R; Phillips T; Case CP; Cooke CM; Davidge ST
    Pharmacol Res; 2018 Aug; 134():332-342. PubMed ID: 29778808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.