These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22849166)

  • 1. Top-down processed silicon nanowires for thermoelectric applications.
    Jang M; Park Y; Hyun Y; Jun M; Choi SJ; Zyung T; Kim JD
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3552-4. PubMed ID: 22849166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seebeck coefficient characterization of highly doped n- and p-type silicon nanowires for thermoelectric device applications fabricated with top-down approach.
    Kim J; Hyun Y; Park Y; Choi W; Kim S; Jeon H; Zyung T; Jang M
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6416-9. PubMed ID: 24205673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Seebeck coefficients in n- and p-type silicon nanowires fabricated by complementary metal-oxide-semiconductor technology.
    Hyun Y; Park Y; Choi W; Kim J; Zyung T; Jang M
    Nanotechnology; 2012 Oct; 23(40):405707. PubMed ID: 22995969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties.
    Lee S; Kim K; Kang DH; Meyyappan M; Baek CK
    Nano Lett; 2019 Feb; 19(2):747-755. PubMed ID: 30636421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal and Thermoelectric Transport in Highly Resistive Single Sb
    Ko TY; Shellaiah M; Sun KW
    Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Characteristics of Seebeck Coefficient in Silicon Nanowires Manufactured by CMOS Compatible Process.
    Jang M; Park Y; Jun M; Hyun Y; Choi SJ; Zyung T
    Nanoscale Res Lett; 2010 Jul; 5(10):1654-7. PubMed ID: 21076666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full thermoelectric characterization of InAs nanowires using MEMS heater/sensors.
    Karg SF; Troncale V; Drechsler U; Mensch P; Das Kanungo P; Schmid H; Schmidt V; Gignac L; Riel H; Gotsmann B
    Nanotechnology; 2014 Aug; 25(30):305702. PubMed ID: 25004861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seebeck coefficient of silicon nanowire forests doped by thermal diffusion.
    Elyamny S; Dimaggio E; Pennelli G
    Beilstein J Nanotechnol; 2020; 11():1707-1713. PubMed ID: 33224701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.
    Jun D; Kim S; Choi W; Kim J; Zyung T; Jang M
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7472-5. PubMed ID: 26726353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric power factor of ternary single-crystalline Sb2Te3- and Bi2Te3-based nanowires.
    Bäßler S; Böhnert T; Gooth J; Schumacher C; Pippel E; Nielsch K
    Nanotechnology; 2013 Dec; 24(49):495402. PubMed ID: 24231731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior Thermoelectric Performance of SiGe Nanowires Epitaxially Integrated into Thermal Micro-Harvesters.
    Sojo-Gordillo JM; Sierra CD; Gadea Diez G; Segura-Ruiz J; Bonino V; Nuñez Eroles M; Gonzalez-Rosillo JC; Estrada-Wiese D; Salleras M; Fonseca L; Morata A; Tarancón A
    Small; 2023 Apr; 19(17):e2206399. PubMed ID: 36720043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires.
    Taggart DK; Yang Y; Kung SC; McIntire TM; Penner RM
    Nano Lett; 2011 Jan; 11(1):125-31. PubMed ID: 21133353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon nanowires as efficient thermoelectric materials.
    Boukai AI; Bunimovich Y; Tahir-Kheli J; Yu JK; Goddard WA; Heath JR
    Nature; 2008 Jan; 451(7175):168-71. PubMed ID: 18185583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon Nanowires: A Breakthrough for Thermoelectric Applications.
    Pennelli G; Dimaggio E; Masci A
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentialities of silicon nanowire forests for thermoelectric generation.
    Dimaggio E; Pennelli G
    Nanotechnology; 2018 Apr; 29(13):135401. PubMed ID: 29355836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoretic investigation of Bi₂Te₃ nanowires-a microfabricated thermoelectric characterization platform for measuring the thermoelectric and structural properties of single nanowires.
    Wang Z; Kojda D; Peranio N; Kroener M; Mitdank R; Toellner W; Nielsch K; Fischer SF; Gutsch S; Zacharias M; Eibl O; Woias P
    Nanotechnology; 2015 Mar; 26(12):125707. PubMed ID: 25743098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Enzymatic Doped/Undoped Poly-Silicon Nanowire Sensor for Glucose Concentration Measurement.
    Hsu CC; Ho WK; Wu CC; Dai CL
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disproportionation of thermoelectric bismuth telluride nanowires as a result of the annealing process.
    Lee J; Berger A; Cagnon L; Gösele U; Nielsch K; Lee J
    Phys Chem Chem Phys; 2010 Dec; 12(46):15247-50. PubMed ID: 21046022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of thermoelectric power factor via radial dopant inhomogeneity in B-doped Si nanowires.
    Zhuge F; Yanagida T; Fukata N; Uchida K; Kanai M; Nagashima K; Meng G; He Y; Rahong S; Li X; Kawai T
    J Am Chem Soc; 2014 Oct; 136(40):14100-6. PubMed ID: 25229842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.