These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 22849340)

  • 41. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.
    Hudson PS; Woodcock HL; Boresch S
    J Phys Chem Lett; 2015 Dec; 6(23):4850-6. PubMed ID: 26539729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The free energy of expansion and contraction: treatment of arbitrary systems using the Jarzynski equality.
    Davie SJ; Reid JC; Searles DJ
    J Chem Phys; 2012 May; 136(17):174111. PubMed ID: 22583214
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptive steered molecular dynamics: validation of the selection criterion and benchmarking energetics in vacuum.
    Ozer G; Quirk S; Hernandez R
    J Chem Phys; 2012 Jun; 136(21):215104. PubMed ID: 22697572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonequilibrium work relations for systems subject to mechanical and thermal changes.
    Chelli R
    J Chem Phys; 2009 Feb; 130(5):054102. PubMed ID: 19206953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accurate calculations of free-energy differences by the distribution method.
    Wu D
    J Chem Phys; 2008 Jun; 128(22):224105. PubMed ID: 18554004
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the relative merits of equilibrium and non-equilibrium simulations for the estimation of free-energy differences.
    Daura X; Affentranger R; Mark AE
    Chemphyschem; 2010 Dec; 11(17):3734-43. PubMed ID: 21080399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessing the efficiency of free energy calculation methods.
    Rodriguez-Gomez D; Darve E; Pohorille A
    J Chem Phys; 2004 Feb; 120(8):3563-78. PubMed ID: 15268518
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unified treatment of the quantum fluctuation theorem and the Jarzynski equality in terms of microscopic reversibility.
    Monnai T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):027102. PubMed ID: 16196752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Folding Free Energy Determination of an RNA Three-Way Junction Using Fluctuation Theorems.
    Aspas-Caceres J; Rico-Pasto M; Pastor I; Ritort F
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885118
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
    Boulougouris GC
    J Comput Chem; 2014 May; 35(13):1024-35. PubMed ID: 24664967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A potential of mean force estimator based on nonequilibrium work exponential averages.
    Chelli R; Procacci P
    Phys Chem Chem Phys; 2009 Feb; 11(8):1152-8. PubMed ID: 19209357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Jarzyski's Equality and Crooks' Fluctuation Theorem for General Markov Chains with Application to Decision-Making Systems.
    Hack P; Gottwald S; Braun DA
    Entropy (Basel); 2022 Nov; 24(12):. PubMed ID: 36554136
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimal estimators and asymptotic variances for nonequilibrium path-ensemble averages.
    Minh DD; Chodera JD
    J Chem Phys; 2009 Oct; 131(13):134110. PubMed ID: 19814546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accuracy and convergence of free energy differences calculated from nonequilibrium switching processes.
    Goette M; Grubmüller H
    J Comput Chem; 2009 Feb; 30(3):447-56. PubMed ID: 18677708
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comment regarding "On the Crooks fluctuation theorem and the Jarzynski equality" [J. Chem. Phys. 129, 091101 (2008)] and "Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics" [J. Chem. Phys. 129, 144113 (2008)].
    Crooks GE
    J Chem Phys; 2009 Mar; 130(10):107101; discussion 107102. PubMed ID: 19292558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Annealed importance sampling with constant cooling rate.
    Giovannelli E; Cardini G; Gellini C; Pietraperzia G; Chelli R
    J Chem Phys; 2015 Feb; 142(7):074102. PubMed ID: 25701997
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Work distributions in the T=0 random field Ising model.
    Illa X; Huguet JM; Vives E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021123. PubMed ID: 19391722
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics.
    Ramírez CL; Martí MA; Roitberg AE
    Methods Enzymol; 2016; 578():123-43. PubMed ID: 27497165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-ensemble nonequilibrium path-sampling estimates of free energy differences.
    Ytreberg FM; Zuckerman DM
    J Chem Phys; 2004 Jun; 120(23):10876-9. PubMed ID: 15268117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reconstructing equilibrium entropy and enthalpy profiles from non-equilibrium pulling.
    Jeong D; Andricioaei I
    J Chem Phys; 2013 Mar; 138(11):114110. PubMed ID: 23534630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.