BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22849576)

  • 21. Synthesis and herbicidal activity of optically active α-(substituted phenoxyacetoxy) (substituted phenyl) methylphosphonates.
    Xu C; Zhou Y; Qi R; Dai G; Tan X; He H
    Pestic Biochem Physiol; 2017 Nov; 143():298-305. PubMed ID: 29183605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enantioselective and Synergetic Toxicity of Axial Chiral Herbicide Propisochlor to SP2/0 Myeloma Cells.
    Liu Y; Zhang X; Liu C; Yang R; Xu Z; Zhou L; Sun Y; Lei H
    J Agric Food Chem; 2015 Sep; 63(36):7914-20. PubMed ID: 26299567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enantioselective effects of optically active alpha-methylbenzyl-s-triazine on the root growth of rice and Echinochloa plants and their herbicidal activity.
    Omokawa H; Tabei A
    Biosci Biotechnol Biochem; 2002 Sep; 66(9):1959-62. PubMed ID: 12400699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enantioselective environmental behavior of the chiral herbicide fenoxaprop-ethyl and its chiral metabolite fenoxaprop in soil.
    Zhang Y; Liu D; Diao J; He Z; Zhou Z; Wang P; Li X
    J Agric Food Chem; 2010 Dec; 58(24):12878-84. PubMed ID: 21121654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation and aquatic toxicity of enantiomers of 1-(substituted phenoxyacetoxy)alkylphosphonate herbicides.
    Li L; Zhou S; Zhao M; Zhang A; Peng H; Tan X; Lin C; He H
    Chirality; 2008 Feb; 20(2):130-8. PubMed ID: 18092302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental fate processes and biochemical transformations of chiral emerging organic pollutants.
    Wong CS
    Anal Bioanal Chem; 2006 Oct; 386(3):544-58. PubMed ID: 16715266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enantioselective metabolism of the chiral herbicide diclofop-methyl and diclofop by HPLC in loach (Misgurnus anguillicaudatus) liver microsomes in vitro.
    Ma R; Qu H; Liu X; Liu D; Liang Y; Wang P; Zhou Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 969():132-8. PubMed ID: 25173494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides.
    Schneiderheinze JM; Armstrong DW; Berthod A
    Chirality; 1999; 11(4):330-7. PubMed ID: 10224660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enantioselective effects of chiral herbicide diclofop acid on rice Xiushui 63 seedlings.
    Ye J; Zhang Q; Zhang A; Wen Y; Liu W
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):85-91. PubMed ID: 19452112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereoselective quantitation of haloxyfop in environment samples and enantioselective degradation in soils.
    Sun M; Liu D; Shen Z; Zhou Z; Wang P
    Chemosphere; 2015 Jan; 119():583-589. PubMed ID: 25128890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enantioselective high-performance liquid chromatographic separations to study occurrence and fate of chiral pesticides in soil, water, and agricultural products.
    Lucci E; Dal Bosco C; Antonelli L; Fanali C; Fanali S; Gentili A; Chankvetadze B
    J Chromatogr A; 2022 Dec; 1685():463595. PubMed ID: 36323104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-performance liquid chromatographic separation of imidazolinone herbicide enantiomers and their methyl derivatives on polysaccharide-coated chiral stationary phases.
    Lao W; Gan J
    J Chromatogr A; 2006 Jun; 1117(2):184-93. PubMed ID: 16620842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures.
    Cai X; Liu W; Sheng G
    J Agric Food Chem; 2008 Mar; 56(6):2139-46. PubMed ID: 18318497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A clay-based formulation of the herbicide imazaquin containing exclusively the biologically active enantiomer.
    López-Cabeza R; Poiger T; Cornejo J; Celis R
    Pest Manag Sci; 2019 Jul; 75(7):1894-1901. PubMed ID: 30537433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enantioselective degradation and chiral stability of the herbicide fluazifop-butyl in soil and water.
    Qi Y; Liu D; Luo M; Jing X; Wang P; Zhou Z
    Chemosphere; 2016 Mar; 146():315-22. PubMed ID: 26735732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enantioselective degradation in sediment and aquatic toxicity to Daphnia magna of the herbicide lactofen enantiomers.
    Diao J; Xu P; Wang P; Lu D; Lu Y; Zhou Z
    J Agric Food Chem; 2010 Feb; 58(4):2439-45. PubMed ID: 20088506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chirality of organophosphorus pesticides: analysis and toxicity.
    Nillos MG; Gan J; Schlenk D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 May; 878(17-18):1277-84. PubMed ID: 19962358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of phenolic herbicide toxicity and mode of action by different assays.
    Bettiol C; De Vettori S; Minervini G; Zuccon E; Marchetto D; Ghirardini AV; Argese E
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7398-408. PubMed ID: 26695414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chiral separation and enantioselective degradation of the chiral herbicide napropamide.
    Qi Y; Liu D; Sun M; Di S; Wang P; Zhou Z
    Chirality; 2014 Feb; 26(2):108-13. PubMed ID: 24436218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analytical and Preparative Scale Separation of Enantiomers of Chiral Drugs by Chromatography and Related Methods.
    Gumustas M; Ozkan SA; Chankvetadze B
    Curr Med Chem; 2018; 25(33):4152-4188. PubMed ID: 29376488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.