These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22849577)

  • 1. Elastin-like peptide amphiphiles form nanofibers with tunable length.
    Aluri S; Pastuszka MK; Moses AS; MacKay JA
    Biomacromolecules; 2012 Sep; 13(9):2645-54. PubMed ID: 22849577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncanonical self-assembly of highly asymmetric genetically encoded polypeptide amphiphiles into cylindrical micelles.
    McDaniel JR; Weitzhandler I; Prevost S; Vargo KB; Appavou MS; Hammer DA; Gradzielski M; Chilkoti A
    Nano Lett; 2014 Nov; 14(11):6590-8. PubMed ID: 25268037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides.
    Sugawara-Narutaki A; Yasunaga S; Sugioka Y; Le DHT; Kitamura I; Nakamura J; Ohtsuki C
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31842263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of gelation kinetics in bioactive peptide amphiphiles.
    Niece KL; Czeisler C; Sahni V; Tysseling-Mattiace V; Pashuck ET; Kessler JA; Stupp SI
    Biomaterials; 2008 Dec; 29(34):4501-9. PubMed ID: 18774605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical stimulus accelerates and directs the self-assembly of silk-elastin-like nanofibers.
    Chang J; Peng XF; Hijji K; Cappello J; Ghandehari H; Solares SD; Seog J
    J Am Chem Soc; 2011 Feb; 133(6):1745-7. PubMed ID: 21247161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastin-like polypeptides as models of intrinsically disordered proteins.
    Roberts S; Dzuricky M; Chilkoti A
    FEBS Lett; 2015 Sep; 589(19 Pt A):2477-86. PubMed ID: 26325592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails.
    Xu XD; Jin Y; Liu Y; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):329-35. PubMed ID: 20678903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks.
    Fisusi FA; Notman R; Granger LA; Malkinson JP; Schatzlein AG; Uchegbu IF
    Pharm Nanotechnol; 2017; 5(3):215-219. PubMed ID: 28847269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of elastin-like polypeptides in drug delivery.
    MacEwan SR; Chilkoti A
    J Control Release; 2014 Sep; 190():314-30. PubMed ID: 24979207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid biomimetic nanomatrix composed of electrospun polycaprolactone and bioactive peptide amphiphiles for cardiovascular implants.
    Andukuri A; Kushwaha M; Tambralli A; Anderson JM; Dean DR; Berry JL; Sohn YD; Yoon YS; Brott BC; Jun HW
    Acta Biomater; 2011 Jan; 7(1):225-33. PubMed ID: 20728588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility.
    Le DHT; Tsutsui Y; Sugawara-Narutaki A; Yukawa H; Baba Y; Ohtsuki C
    J Biomed Mater Res A; 2017 Sep; 105(9):2475-2484. PubMed ID: 28486777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastin-Like Polypeptides for Biomedical Applications.
    Varanko AK; Su JC; Chilkoti A
    Annu Rev Biomed Eng; 2020 Jun; 22():343-369. PubMed ID: 32343908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
    Zeng L; Jiang L; Teng W; Cappello J; Zohar Y; Wu X
    Macromol Rapid Commun; 2014 Jul; 35(14):1273-9. PubMed ID: 24798978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tunable and reversible platform for the intracellular formation of genetically engineered protein microdomains.
    Pastuszka MK; Janib SM; Weitzhandler I; Okamoto CT; Hamm-Alvarez S; Mackay JA
    Biomacromolecules; 2012 Nov; 13(11):3439-44. PubMed ID: 23088632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing Polyamine-Based Peptide Amphiphiles with Tunable Morphology and Physicochemical Properties.
    Samad MB; Chhonker YS; Contreras JI; McCarthy A; McClanahan MM; Murry DJ; Conda-Sheridan M
    Macromol Biosci; 2017 Aug; 17(8):. PubMed ID: 28509362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly/disassembly hysteresis of nanoparticles composed of marginally soluble, short elastin-like polypeptides.
    Bahniuk MS; Alshememry AK; Elgersma SV; Unsworth LD
    J Nanobiotechnology; 2018 Feb; 16(1):15. PubMed ID: 29454362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature sensitive peptides: engineering hyperthermia-directed therapeutics.
    Mackay JA; Chilkoti A
    Int J Hyperthermia; 2008 Sep; 24(6):483-95. PubMed ID: 18608590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosaminoglycan mimetic peptide nanofibers promote mineralization by osteogenic cells.
    Kocabey S; Ceylan H; Tekinay AB; Guler MO
    Acta Biomater; 2013 Nov; 9(11):9075-85. PubMed ID: 23871942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of structure and dynamics during phase separation of an elastomeric protein.
    Reichheld SE; Muiznieks LD; Keeley FW; Sharpe S
    Proc Natl Acad Sci U S A; 2017 May; 114(22):E4408-E4415. PubMed ID: 28507126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.