BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22849651)

  • 1. CRISPR transcript processing: a mechanism for generating a large number of small interfering RNAs.
    Djordjevic M; Djordjevic M; Severinov K
    Biol Direct; 2012 Jul; 7():24. PubMed ID: 22849651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems.
    Richter C; Chang JT; Fineran PC
    Viruses; 2012 Oct; 4(10):2291-311. PubMed ID: 23202464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site.
    Hatoum-Aslan A; Maniv I; Marraffini LA
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21218-22. PubMed ID: 22160698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii.
    Brendel J; Stoll B; Lange SJ; Sharma K; Lenz C; Stachler AE; Maier LK; Richter H; Nickel L; Schmitz RA; Randau L; Allers T; Urlaub H; Backofen R; Marchfelder A
    J Biol Chem; 2014 Mar; 289(10):7164-7177. PubMed ID: 24459147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.
    Hatoum-Aslan A; Samai P; Maniv I; Jiang W; Marraffini LA
    J Biol Chem; 2013 Sep; 288(39):27888-97. PubMed ID: 23935102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches to study CRISPR RNA biogenesis and the key players involved.
    Behler J; Hess WR
    Methods; 2020 Feb; 172():12-26. PubMed ID: 31325492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation
    Cooper LA; Stringer AM; Wade JT
    mBio; 2018 Apr; 9(2):. PubMed ID: 29666291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1.
    Nickel L; Ulbricht A; Alkhnbashi OS; Förstner KU; Cassidy L; Weidenbach K; Backofen R; Schmitz RA
    RNA Biol; 2019 Apr; 16(4):492-503. PubMed ID: 30153081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B.
    Maier LK; Lange SJ; Stoll B; Haas KA; Fischer S; Fischer E; Duchardt-Ferner E; Wöhnert J; Backofen R; Marchfelder A
    RNA Biol; 2013 May; 10(5):865-74. PubMed ID: 23594992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RcsB-BglJ-mediated activation of Cascade operon does not induce the maturation of CRISPR RNAs in E. coli K12.
    Arslan Z; Stratmann T; Wurm R; Wagner R; Schnetz K; Pul Ü
    RNA Biol; 2013 May; 10(5):708-15. PubMed ID: 23392250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS.
    Pul U; Wurm R; Arslan Z; Geissen R; Hofmann N; Wagner R
    Mol Microbiol; 2010 Mar; 75(6):1495-512. PubMed ID: 20132443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity.
    Charpentier E; Richter H; van der Oost J; White MF
    FEMS Microbiol Rev; 2015 May; 39(3):428-41. PubMed ID: 25994611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
    Chylinski K; Le Rhun A; Charpentier E
    RNA Biol; 2013 May; 10(5):726-37. PubMed ID: 23563642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis.
    Zhang Y; Heidrich N; Ampattu BJ; Gunderson CW; Seifert HS; Schoen C; Vogel J; Sontheimer EJ
    Mol Cell; 2013 May; 50(4):488-503. PubMed ID: 23706818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis.
    Richter H; Zoephel J; Schermuly J; Maticzka D; Backofen R; Randau L
    Nucleic Acids Res; 2012 Oct; 40(19):9887-96. PubMed ID: 22879377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes.
    East-Seletsky A; O'Connell MR; Burstein D; Knott GJ; Doudna JA
    Mol Cell; 2017 May; 66(3):373-383.e3. PubMed ID: 28475872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium tuberculosis type III-A CRISPR/Cas system crRNA and its maturation have atypical features.
    Wei W; Zhang S; Fleming J; Chen Y; Li Z; Fan S; Liu Y; Wang W; Wang T; Liu Y; Ren B; Wang M; Jiao J; Chen Y; Zhou Y; Zhou Y; Gu S; Zhang X; Wan L; Chen T; Zhou L; Chen Y; Zhang XE; Li C; Zhang H; Bi L
    FASEB J; 2019 Jan; 33(1):1496-1509. PubMed ID: 29979631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas systems and RNA-guided interference.
    Barrangou R
    Wiley Interdiscip Rev RNA; 2013; 4(3):267-78. PubMed ID: 23520078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.