These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22849655)
1. β-Carotene assay revisited. application to characterize and quantify antioxidant and prooxidant activities in a microplate. Prieto MA; Rodríguez-Amado I; Vázquez JA; Murado MA J Agric Food Chem; 2012 Sep; 60(36):8983-93. PubMed ID: 22849655 [TBL] [Abstract][Full Text] [Related]
2. Crocin bleaching antioxidant assay revisited: application to microplate to analyse antioxidant and pro-oxidant activities. Prieto MA; Vázquez JA; Murado MA Food Chem; 2015 Jan; 167():299-310. PubMed ID: 25148992 [TBL] [Abstract][Full Text] [Related]
3. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers. Apak R; Güçlü K; Ozyürek M; Bektaşoğlu B; Bener M Methods Mol Biol; 2010; 594():215-39. PubMed ID: 20072920 [TBL] [Abstract][Full Text] [Related]
4. Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Apak R; Güçlü K; Ozyürek M; Karademir SE; Altun M Free Radic Res; 2005 Sep; 39(9):949-61. PubMed ID: 16087476 [TBL] [Abstract][Full Text] [Related]
5. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Apak R; Güçlü K; Ozyürek M; Karademir SE J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784 [TBL] [Abstract][Full Text] [Related]
6. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts. Apak R; Güçlü K; Ozyürek M; Bektas Oğlu B; Bener M Methods Mol Biol; 2008; 477():163-93. PubMed ID: 19082947 [TBL] [Abstract][Full Text] [Related]
7. Beta-carotene and protein oxidation: effects of ascorbic acid and alpha-tocopherol. Zhang P; Omaye ST Toxicology; 2000 Apr; 146(1):37-47. PubMed ID: 10773361 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant actions of beta-carotene in liposomal and microsomal membranes: role of carotenoid-membrane incorporation and alpha-tocopherol. Liebler DC; Stratton SP; Kaysen KL Arch Biochem Biophys; 1997 Feb; 338(2):244-50. PubMed ID: 9028879 [TBL] [Abstract][Full Text] [Related]
9. Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Rodrigues E; Mariutti LR; Faria AF; Mercadante AZ Food Chem; 2012 Sep; 134(2):704-11. PubMed ID: 23107681 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant capacity and lipophilic content of seaweeds collected from the Qingdao coastline. Huang HL; Wang BG J Agric Food Chem; 2004 Aug; 52(16):4993-7. PubMed ID: 15291465 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant activity of phenolic acids in lipid oxidation catalyzed by different prooxidants. Kristinová V; Mozuraityte R; Storrø I; Rustad T J Agric Food Chem; 2009 Nov; 57(21):10377-85. PubMed ID: 19817371 [TBL] [Abstract][Full Text] [Related]
12. Increasing photostability and water-solubility of carotenoids: synthesis and characterization of β-carotene-humic acid complexes. Martini S; D'Addario C; Bonechi C; Leone G; Tognazzi A; Consumi M; Magnani A; Rossi C J Photochem Photobiol B; 2010 Dec; 101(3):355-61. PubMed ID: 20850339 [TBL] [Abstract][Full Text] [Related]
13. Reactions of beta-carotene with cigarette smoke oxidants. Identification of carotenoid oxidation products and evaluation of the prooxidant/antioxidant effect. Baker DL; Krol ES; Jacobsen N; Liebler DC Chem Res Toxicol; 1999 Jun; 12(6):535-43. PubMed ID: 10368317 [TBL] [Abstract][Full Text] [Related]
14. Advantages and limitations of common testing methods for antioxidants. Amorati R; Valgimigli L Free Radic Res; 2015 May; 49(5):633-49. PubMed ID: 25511471 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant assays for plant and food components. Moon JK; Shibamoto T J Agric Food Chem; 2009 Mar; 57(5):1655-66. PubMed ID: 19182948 [TBL] [Abstract][Full Text] [Related]
16. Differences in responsivity of original cupric reducing antioxidant capacity and cupric-bathocuproine sulfonate assays to antioxidant compounds. Çelik SE; Ozyürek M; Güçlü K; Apak R Anal Biochem; 2012 Apr; 423(1):36-8. PubMed ID: 22326793 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. Hassimotto NM; Genovese MI; Lajolo FM J Agric Food Chem; 2005 Apr; 53(8):2928-35. PubMed ID: 15826041 [TBL] [Abstract][Full Text] [Related]
18. Changes in hydrophilic and lipophilic antioxidant activity in relation to their phenolic composition during the chamber drying of red grapes at a controlled temperature. Serratosa MP; Marquez A; Lopez-Toledano A; Medina M; Merida J J Agric Food Chem; 2011 Mar; 59(5):1882-92. PubMed ID: 21319807 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of antioxidants as quenchers or scavengers of reactive oxygen species based on quenching of MCLA-dependent chemiluminescence. Hosaka S; Obuki M; Nakajima J; Suzuki M Luminescence; 2005; 20(6):419-27. PubMed ID: 15966055 [TBL] [Abstract][Full Text] [Related]
20. New analytical method for investigating the antioxidant power of food extracts on the basis of their electron-donating ability: comparison to the ferric reducing/antioxidant power (FRAP) assay. Chen TS; Liou SY; Wu HC; Tsai FJ; Tsai CH; Huang CY; Chang YL J Agric Food Chem; 2010 Aug; 58(15):8477-80. PubMed ID: 20608750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]