BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22849822)

  • 1. Two-photon imaging of spinal cord cellular networks.
    Johannssen HC; Helmchen F
    Exp Neurol; 2013 Apr; 242():18-26. PubMed ID: 22849822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo two-photon imaging of neurons and glia in the mouse spinal cord.
    Steffens H; Nadrigny F; Kirchhoff F
    Cold Spring Harb Protoc; 2012 Dec; 2012(12):. PubMed ID: 23209139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of the mouse spinal column for single imaging using two-photon laser-scanning microscopy.
    Steffens H; Nadrigny F; Kirchhoff F
    Cold Spring Harb Protoc; 2012 Dec; 2012(12):. PubMed ID: 23209137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of the mouse spinal column for repetitive imaging using two-photon laser-scanning microscopy.
    Steffens H; Nadrigny F; Kirchhoff F
    Cold Spring Harb Protoc; 2012 Dec; 2012(12):. PubMed ID: 23209138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo two-photon imaging of motoneurons and adjacent glia in the ventral spinal cord.
    Cartarozzi LP; Rieder P; Bai X; Scheller A; Oliveira ALR; Kirchhoff F
    J Neurosci Methods; 2018 Apr; 299():8-15. PubMed ID: 29408351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo two-photon calcium imaging using multicell bolus loading.
    Garaschuk O; Konnerth A
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5482. PubMed ID: 20889692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse.
    Wilson JM; Dombeck DA; Díaz-Ríos M; Harris-Warrick RM; Brownstone RM
    J Neurophysiol; 2007 Apr; 97(4):3118-25. PubMed ID: 17303810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging microcircuit function in healthy and diseased brain.
    Garaschuk O
    Exp Neurol; 2013 Apr; 242():41-9. PubMed ID: 22370088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo imaging: a dynamic imaging approach to study spinal cord regeneration.
    Laskowski CJ; Bradke F
    Exp Neurol; 2013 Apr; 242():11-7. PubMed ID: 22836145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia.
    Corti S; Locatelli F; Donadoni C; Strazzer S; Salani S; Del Bo R; Caccialanza M; Bresolin N; Scarlato G; Comi GP
    J Neurosci Res; 2002 Dec; 70(6):721-33. PubMed ID: 12444594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks.
    Rigato C; Buckinx R; Le-Corronc H; Rigo JM; Legendre P
    Glia; 2011 Apr; 59(4):675-95. PubMed ID: 21305616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging techniques in retinal research.
    Morgan J; Huckfeldt R; Wong RO
    Exp Eye Res; 2005 Mar; 80(3):297-306. PubMed ID: 15721612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal and glial localization of the cannabinoid-1 receptor in the superficial spinal dorsal horn of the rodent spinal cord.
    Hegyi Z; Kis G; Holló K; Ledent C; Antal M
    Eur J Neurosci; 2009 Jul; 30(2):251-62. PubMed ID: 19614976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Topography and cellular composition of sensory centers of the thoracic region of the cat spinal cord].
    Flegontova VV
    Morfologiia; 1999; 115(3):62-4. PubMed ID: 10451848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of commissural neurons in the embryonic rat spinal cord.
    Silos-Santiago I; Snider WD
    J Comp Neurol; 1992 Nov; 325(4):514-26. PubMed ID: 1469113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischemia-induced disturbance of neuronal network function in the rat spinal cord analyzed by voltage-imaging.
    Fukuda K; Okada Y; Yoshida H; Aoyama R; Nakamura M; Chiba K; Toyama Y
    Neuroscience; 2006 Jul; 140(4):1453-65. PubMed ID: 16675139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using voltage-sensitive dye recording to image the functional development of neuronal circuits in vertebrate embryos.
    Glover JC; Sato K; Momose-Sato Y
    Dev Neurobiol; 2008 May; 68(6):804-16. PubMed ID: 18383552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lentiviral-mediated targeted transgene expression in dorsal spinal cord glia: tool for the study of glial cell implication in mechanisms underlying chronic pain development.
    Meunier A; Mauborgne A; Masson J; Mallet J; Pohl M
    J Neurosci Methods; 2008 Jan; 167(2):148-59. PubMed ID: 17949823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.