These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22850666)

  • 1. Critical sequences of phenomena in the progression of atherosclerotic lesions, with reference to the role of microvessels.
    Michael Munro J; Path FR
    Med Hypotheses; 2012 Oct; 79(4):535-8. PubMed ID: 22850666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphatic vessels: an emerging actor in atherosclerotic plaque development.
    Kutkut I; Meens MJ; McKee TA; Bochaton-Piallat ML; Kwak BR
    Eur J Clin Invest; 2015 Jan; 45(1):100-8. PubMed ID: 25388153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neovascularization of the atherosclerotic plaque: interplay between atherosclerotic lesion, adventitia-derived microvessels and perivascular fat.
    van Hinsbergh VW; Eringa EC; Daemen MJ
    Curr Opin Lipidol; 2015 Oct; 26(5):405-11. PubMed ID: 26241102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plaque-associated vasa vasorum in aged apolipoprotein E-deficient mice exhibit proatherogenic functional features in vivo.
    Rademakers T; Douma K; Hackeng TM; Post MJ; Sluimer JC; Daemen MJ; Biessen EA; Heeneman S; van Zandvoort MA
    Arterioscler Thromb Vasc Biol; 2013 Feb; 33(2):249-56. PubMed ID: 23241413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale-patient-specific artery and atherogenesis models.
    Siogkas P; Sakellarios A; Exarchos TP; Athanasiou L; Karvounis E; Stefanou K; Fotiou E; Fotiadis DI; Naka KK; Michalis LK; Filipovic N; Parodi O
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3464-8. PubMed ID: 21846599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adventitial lymphatic vessels -- an important role in atherosclerosis.
    Xu X; Lin H; Lv H; Zhang M; Zhang Y
    Med Hypotheses; 2007; 69(6):1238-41. PubMed ID: 17825501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammatory angiogenesis in atherogenesis--a double-edged sword.
    Ribatti D; Levi-Schaffer F; Kovanen PT
    Ann Med; 2008; 40(8):606-21. PubMed ID: 18608127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TLRs are important inflammatory factors in atherosclerosis and may be a therapeutic target.
    Liu Y; Yu H; Zhang Y; Zhao Y
    Med Hypotheses; 2008; 70(2):314-6. PubMed ID: 17689203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of hypoxia-inducible factor 1 in atherosclerosis.
    Gao L; Chen Q; Zhou X; Fan L
    J Clin Pathol; 2012 Oct; 65(10):872-6. PubMed ID: 22569539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifurcation and dynamics in a mathematical model of early atherosclerosis: How acute inflammation drives lesion development.
    Chalmers AD; Cohen A; Bursill CA; Myerscough MR
    J Math Biol; 2015 Dec; 71(6-7):1451-80. PubMed ID: 25732771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis.
    Sluimer JC; Daemen MJ
    J Pathol; 2009 May; 218(1):7-29. PubMed ID: 19309025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological mechanisms of microvessel formation in advanced atherosclerosis: the big five.
    Cheng C; Chrifi I; Pasterkamp G; Duckers HJ
    Trends Cardiovasc Med; 2013 Jul; 23(5):153-64. PubMed ID: 23375379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial autophagic flux hampers atherosclerotic lesion development.
    Kheloufi M; Vion AC; Hammoutene A; Poisson J; Lasselin J; Devue C; Pic I; Dupont N; Busse J; Stark K; Lafaurie-Janvore J; Barakat AI; Loyer X; Souyri M; Viollet B; Julia P; Tedgui A; Codogno P; Boulanger CM; Rautou PE
    Autophagy; 2018; 14(1):173-175. PubMed ID: 29157095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of atherosclerosis: magnetic resonance imaging.
    Corti R; Fuster V
    Eur Heart J; 2011 Jul; 32(14):1709-19b. PubMed ID: 21508002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of second-hand smoke on biological processes important in atherogenesis.
    Yuan H; Wong LS; Bhattacharya M; Ma C; Zafarani M; Yao M; Schneider M; Pitas RE; Martins-Green M
    BMC Cardiovasc Disord; 2007 Jan; 7():1. PubMed ID: 17210084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Numbers of cells and cell proliferation in intima of different human arteries].
    Bobryshev IuV; Karagodin VP; Kovalevskaia ZhI; Miasoedova VA; Shapyrina EV; Saliamov VI; Kargapolova IuM; Galaktionova DIu; Mel'nichenko AA; Orekhov AN
    Tsitologiia; 2011; 53(10):815-25. PubMed ID: 22232939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural features of human atherosclerosis.
    Perrotta I
    Ultrastruct Pathol; 2013 Feb; 37(1):43-51. PubMed ID: 21843056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis.
    Leonarduzzi G; Gamba P; Gargiulo S; Biasi F; Poli G
    Free Radic Biol Med; 2012 Jan; 52(1):19-34. PubMed ID: 22037514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of colony-stimulating factors in atherosclerosis.
    Di Gregoli K; Johnson JL
    Curr Opin Lipidol; 2012 Oct; 23(5):412-21. PubMed ID: 22964991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage-mediated proteolytic remodeling of the extracellular matrix in atherosclerosis results in neoepitopes: a potential new class of biochemical markers.
    Skjøt-Arkil H; Barascuk N; Register T; Karsdal MA
    Assay Drug Dev Technol; 2010 Oct; 8(5):542-52. PubMed ID: 20662734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.